Category Archives: Research

Tips for Live Tweeting a Meeting

Live tweeting during a scientific conference offers many benefits. For attendees at the meeting, it allows sharing of learning points from multiple concurrent sessions. This also decreases the incidence of “FOMO (Fear of Missing Out)” since you can only be in one session at any given time but can learn vicariously through others. For your Twitter community outside the meeting venue, your live tweeting can help to disseminate the key messages from the conference to a broader audience and ultimately may facilitate changes in clinical practice.

Check out these “Ten Simple Rules for Live Tweeting at Scientific Conferences” and Marie Ennis-O’Connor’s “15 Tips for Live Tweeting an Event” for a comprehensive overview of this subject.

Here are a couple of my own general rules to tweet by:

  1. Register your scientific conference hashtag on Symplur. This gives you access to free analytics and transcript services for a limited time.
  2. Be sure to use the correct conference hashtag and include it in all your tweets related to the conference. This is probably included in your conference materials or emails from the organizer. The hashtag allows others to easily find your tweets related to the conference and include your tweets in transcript summaries after the conference is over.
  3. Go for quality and not quantity. It is too difficult (and unnecessary) to give a phrase-by-phrase reproduction of a speaker’s entire lecture. Remember that you are primarily in attendance to learn, so make sure you spend most of your time listening and not tweeting. Consider summarizing two or three salient points into one tweet or tweeting photos of slides with a short commentary to provide context to your Twitter community.
  4. Give credit where credit is due. Do a little homework before tweeting. If a speaker has a Twitter handle, include it in your tweet. If the speaker references a relevant article, find the link and include it in your tweet. These elements make your tweet more informative to the reader and may increase the likelihood of its being retweeted or generating further conversation on Twitter.
  5. Don’t say anything in a tweet that you wouldn’t say to someone in public. Healthy debate is one of the best parts of scientific conferences, but keep the discussion on Twitter clean and professional and of course protect patient privacy and confidentiality.

Related Posts:

The “Top 10” Regional Anesthesia Articles of 2016

I was recently asked to provide a list of my “Top 10” regional anesthesia research articles from 2016 and not to include my own. So for what it’s worth (not much!), I’m sharing them below in no particular order.

In my humble opinion, these articles from 2016 have already influenced my clinical practice, taught me to look at something differently, or made me think of a new research question.

Trends in the Use of Regional Anesthesia: Neuraxial and Peripheral Nerve Blocks. Reg Anesth Pain Med. 2016 Jan-Feb;41(1):43-9. doi: 10.1097/AAP.0000000000000342.

The Second American Society of Regional Anesthesia and Pain Medicine Evidence-Based Medicine Assessment of Ultrasound-Guided Regional Anesthesia: Executive Summary. Reg Anesth Pain Med. 2016 Mar-Apr;41(2):181-94. doi: 10.1097/AAP.0000000000000331.

Teaching ultrasound-guided regional anesthesia remotely: a feasibility study. Acta Anaesthesiol Scand. 2016 Aug;60(7):995-1002. doi: 10.1111/aas.12695.

Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016 Feb 21;2:CD009121. doi: 10.1002/14651858.CD009121.pub2.

Perineural versus intravenous dexamethasone as adjuncts to local anaesthetic brachial plexus block for shoulder surgery. Anaesthesia. 2016 Apr;71(4):380-8. doi: 10.1111/anae.13409.

Continuous Popliteal Sciatic Blocks: Does Varying Perineural Catheter Location Relative to the Sciatic Bifurcation Influence Block Effects? A Dual-Center, Randomized, Subject-Masked, Controlled Clinical Trial. Anesth Analg. 2016 May;122(5):1689-95. doi: 10.1213/ANE.0000000000001211.

A randomised controlled trial comparing meat-based with human cadaveric models for teaching ultrasound-guided regional anaesthesia. Anaesthesia. 2016 Aug;71(8):921-9. doi: 10.1111/anae.13446.

Adductor Canal Block Provides Noninferior Analgesia and Superior Quadriceps Strength Compared with Femoral Nerve Block in Anterior Cruciate Ligament Reconstruction. Anesthesiology. 2016 May;124(5):1053-64. doi: 10.1097/ALN.0000000000001045.

A radiologic and anatomic assessment of injectate spread following transmuscular quadratus lumborum block in cadavers. Anaesthesia. 2017 Jan;72(1):73-79. doi: 10.1111/anae.13647.

Regional Nerve Blocks Improve Pain and Functional Outcomes in Hip Fracture: A Randomized Controlled Trial. J Am Geriatr Soc. 2016 Dec;64(12):2433-2439. doi: 10.1111/jgs.14386.

Related Posts:

Changing Clinical Practice Doesn’t Have to Take So Long

Guest post by Seshadri Mudumbai, MD, MS.  Dr. Mudumbai is an Assistant Professor of Anesthesiology, Perioperative and Pain Medicine at Stanford University School of Medicine. He is also a health services researcher and physician anesthesiologist at the Veterans Affairs Palo Alto Health Care System.

time-for-changeChanging physician behavior is rarely easy, and studies show that it can take an average of 17 years before research evidence becomes widely adopted in clinical practice. One study published in JAMA has identified 7 categories of change barriers:

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Why Change?

According to the Institute of Medicine’s Crossing the Quality Chasm: a New Health System for the 21st Century:  “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”  Our group has focused our efforts on implementing updated evidence-based medicine initiatives for surgical patients with a special emphasis on the total knee replacement population.  Knee replacement is already one of the most common types of surgery in the United States (over 700,000 procedures per year).  Given an aging population, the volume of knee replacement surgeries is expected to increase to over 3 million by the year 2030.

We now have sufficient evidence to support “neuraxial anesthesia” (such as a spinal or epidural) as the preferred intraoperative anesthetic technique for knee replacement patients.  With neuraxial anesthesia, an injection in the back temporarily numbs the legs and allows for painless surgery of the knee.  Several studies have now shown better outcomes and fewer complications after knee replacement surgery with neuraxial anesthesia when compared with general anesthesia.  Despite these known benefits, a large study evaluating data from approximately 200,000 knee replacement patients across the United States reveals that use of neuraxial anesthesia occurs in less than 30% of cases.  At our facility prior to changing our practice, we noted a 13% rate of neuraxial anesthesia utilization.  In the face of growing evidence, we chose to change our practice, and the results of these efforts are reported in our recently published article.

How Did We Start?

An important tool used to coordinate the perioperative care of knee replacement patients has long been the clinical pathway.  A clinical pathway is a detailed care plan for the period before, during, and after surgery that covers multiple disciplines:  surgery, anesthesiology and pain management, nursing, physical and occupational therapy, and sometimes more.   The concept of the clinical pathway should be dynamic and not static.  This requires a process to ensure clinical pathways are periodically updated and someone to take a leadership role in managing the process.

At our institution, we established a coordinated care model known as the Perioperative Surgical Home (PSH).  The PSH provides the overall structure and coordination for perioperative care, and multiple clinical pathways exist within this structure.  With a PSH, physician anesthesiologists are charged with providing leadership and oversight of specific clinical pathways, collecting and reviewing data, engaging frontline healthcare staff and managers across disciplines, and suggesting changes or updates to clinical pathways as new evidence emerges.

Within our PSH model, we invested in a 5 month process to change our preferred anesthetic technique from general anesthesia to neuraxial anesthesia within the clinical pathway for knee replacement patients.  This process involved many steps and followed the Consolidated Framework for Implementation Research:

  1. Literature review and interdepartmental presentation
  2. Development of a work document
  3. Training of staff
  4. Prospective collection of data with feedback to staff.

After one year, the overall percentage of knee replacement patients receiving neuraxial anesthesia increased to 63% from 13%, and a statistically-significant increase in neuraxial anesthesia use took place within one month of the updated clinical pathway rollout.

How Do We Keep It Going?

Neuraxial anesthesia continues to be the predominant anesthetic technique that our knee replacement patients receive today.  We attribute the ongoing success of this change to multidisciplinary collaboration, physician leadership in the form of a departmental champion, peer support and feedback, frequent open communication, and engagement and support from facility leadership.  The results of our study and experience show that a PSH may help facilitate changes in clinical practice quicker than other less-coordinated models of care.  As PSH models continue to be developed, further evidence to support the impact of clinical practice changes on patient-oriented outcomes related to quality and safety and healthcare economics is needed.

For patient education materials regarding anesthetic options for knee replacement surgery, please visit My Knee Guide.

 

 

Related Posts:

Tips for Reading a Clinical Research Article

paper stackIt is getting more and more difficult to keep up with newly published articles even just in one medical subspecialty.  With so much to read, from background articles for research papers to articles for journal club to manuscript assignments as a peer reviewer, it is important to be efficient and attack every scientific article or manuscript strategically.

Clinical research is my focus area, but the following updated tips for interpreting a journal article may apply to other areas of research as well.

Background:  Do the authors summarize previously published studies leading up to the present study?  What don’t we already know about this topic?

  1. Do the authors do a good job justifying the reason for the study?  This should not be lengthy if there is clearly a need for the study.
  2. Do the authors present a hypothesis?  What is it?
  3. What is the primary aim/objective of the study?  Do the authors specific secondary aims/objectives?

Study Design:  Do the authors explicitly state the design used in the present study?  If so, what is it?

Retrospective (“case-control study”):  Starts with the outcome then looks back in time for exposure to risk factors or interventions

  1. Can calculate odds ratios to estimate relative risk.
  2. Cannot calculate risk/incidence (not prospective).

Cross-sectional (“prevalence study”):  Takes a snapshot of risk factors and outcome of interest at one point in time or over a specific period of time

  1. Can calculate prevalence.
  2. Cannot calculate risk/incidence (not longitudinal).

Prospective:  Gold standard for clinical research–may be observational or interventional/experimental.  Check if the study is prospectively registered (e.g., clinicaltrials.gov) because most journals expect this.

Observational (“cohort study”)

  1. May or may not have a designated control group (can start with defined group and risk factors are discovered over time such as the Framingham Study).
  2. Can calculate incidence and relative risk for certain risk factors.
  3. Identify causal associations.

Interventional/Experimental (“clinical trial”)

  1. What is the intervention or experiment?
  2. Is there blinding?  If so, who is blinded:  single, double, or triple (statistician blinded)?
  3. Are the groups randomized?  How is this performed?
  4. Is there a sample size estimate and what is it based on (alpha and beta error, population mean and SD, expected effect size)?  This should be centered around the primary outcome.
  5. What are the study groups?  Are the groups independent or related?
  6. Is there a control group such as a placebo (for efficacy studies) or active comparator (standard of care)?

Measurements:  How are the outcome variables operationalized?  Check the validity, precision, and accuracy of the measurement tools (e.g., survey or measurement scale).

  1. Validity:  Has the tool been used before?  Is it reliable?  Does the tool make sense (face validity)?  Is the tool designed to measure the outcome of interest (construct validity)?
  2. Precision:  Does the tool hit the target?
  3. Accuracy:  Are the results reproducible?

Analysis:  What statistical tests are used and are they appropriate?  How do the authors define statistical significance (p-value or confidence intervals)?  How are the results presented in the paper and are they clear?

  1. Categorical variables with independent groups:  1 outcome and 2 groups = Chi square test (exact tests are used when n<5 in any field); multiple outcomes or multiple groups = Kruskal Wallis (with one-way ANOVA and post-hoc multiple comparisons test (e.g., Tukey-Kramer).
  2. Continuous variables with independent groups:  1 outcome and 2 groups = Student’s t test (if normal distribution) or Mann-Whitney U test (if distribution not normal); multiple outcomes or multiple groups = ANOVA with post-hoc multiple comparisons testing; multiple outcomes and multiple groups = linear regression.
  3. Continuous variables with related groups:  paired t test or repeated-measures ANOVA depending on the number of outcomes and groups.
  4. Are the results statistically significant?  Clinically significant?
  5. Do the results make sense?

Conclusions:  I personally tend to skip the discussion section of the paper at first and come up with my own conclusions based on the study results; then I read what the authors have to say later.

  1. Did the authors succeed in proving what they set out to prove?
  2. Read the discussion section.  Do you agree with the authors’ conclusions?
  3. What are possible future studies based on the results of the present study and how would you design the next study?

Related Posts: