To the Next Generation of Physician Leaders

I was recently invited to visit an academic anesthesiology department to speak to the residents about becoming a leader (see SlideShare). In addition to recognizing the honor and privilege of addressing this important topic with the next generation of physician anesthesiologists, I had two other initial thoughts: 1) I must be getting old; and 2) This isn’t going to be easy.

Balloon FiestaI came up with a short list of lessons that I’ve learned over the years. While some examples I included are anesthesiology-specific, the lessons themselves are not. Please feel free to edit, adapt, and add to this list; then disseminate it to the future physician leaders who will one day take our places.

  1. First and foremost, be a good doctor. Always remember that we as physicians take an oath. In the modern version of the Hippocratic Oath commonly recited at medical school graduations today, we say, “May I always act so as to preserve the finest traditions of my calling and may I long experience the joy of healing those who seek my help.” As a physician anesthesiologist, we care for the most vulnerable of patients—those who under anesthesia cannot care for themselves. Examples of anesthesiologists who do not honor their calling exist in the news and even scientific journals, but we cannot follow this path. 

     

  2. Define your identity. We live in the era of the “provider,” and this sometimes causes role confusion from the perspective of our patients. Team PhotoWe also don’t tend to do ourselves any favors. How many times have you heard someone say, “Hi I’m [first name only] with anesthesia”? According to the American Society of Anesthesiologists newsletter, approximately 60% of the public may not know that physician anesthesiologists go to medical school. While every member of the anesthesia care team plays a crucial role, the next level of non-physician provider in this model has one-tenth the amount of clinical training when compared to a physician anesthesiologist at graduation. I’ve written before about what I love about being an anesthesiologist, and being the physician whom patients trust to keep them safe during surgery is a privilege which comes with a great deal of responsibility.
  3. Consider the “big picture.” The health care enterprise is constantly evolving. Today, the emphasis is on value and not volume. Value takes into account quality and cost with the highest quality care at the lowest cost being the ultimate goal. The private practice model of anesthesiology has changed dramatically in the last few years with the growth of “mega-groups” created by vertical and horizontal integration of smaller practices and sometimes purchased by private investors. In this environment, physician anesthesiologists and anesthesiology groups will have to consider ways they can add value, improve the patient experience, and reduce costs of care in order to stay relevant and competitive.
  4. Promote positive change. Observe, ask questions, hypothesize solutions, collect data, evaluate results, draw conclusions, and form new hypotheses—these are all elements of the scientific method and clinical medicine. These steps are also common to process improvement, making physicians perfectly capable of system redesign. The key is establishing your team’s mission and vision, strategic planning and goal-setting, and regularly evaluating progress. Books have been written on these subjects, so I can’t do these topics justice here. In my opinion, physicians offer an important and necessary perspective that cannot be lost as healthcare becomes more and more business-like.
  5. Be open to opportunities. Thomas Edison said, “Opportunity is missed by most people because it is dressed in overalls and looks like work.” I have written previously about the merits of saying yes. As a resident or new staff physician, it often seems impossible to get involved. However, most hospital committee meetings are open to guests. Consider going to one that covers a topic of interest and volunteer for a task if the opportunity presents itself. In addition, many professional societies invite members to self-nominate for committees or submit proposals for educational activities at their annual meetings.
  6. IMG_7673Thank your team. Taking the first steps on the path to leadership is not going to be easy. There will be many obstacles, not the least of which is time management. A high-functioning healthcare team of diverse backgrounds, skills, and abilities will accomplish much more than what an individual can do alone. Celebrate team wins. Respect each team member’s opinion even when it differs from yours.

A good leader should earn the trust of his or her team every day.

Related Posts:

Changing Clinical Practice Shouldn’t Take So Long

An interesting article I read recently confirmed previous studies’ estimation that it takes an average of 17 years before research evidence becomes widely adopted in clinical practice (1)–17 years!

In this article, Morris and colleagues differentiate “translational research” into two types: Type 1 (T1) which refers to experimental testing of basic science research findings in human subjects; and Type 2 (T2) which is the process of taking the results of clinical research and changing clinical practice based on them.

translating research to practice


In 2001, the Institute of Medicine released “Crossing the Quality Chasm: a New Health System for the 21st Century.” One of the ten rules for redesigning the system refers to evidence-based clinical decision-making. The report brief explicitly states: “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”

Changing physicians’ behavior is rarely easy (although occasionally it can be), and many smart people have tried to study what works and what doesn’t. One study published in JAMA that focused on physician adherence to practice guidelines identified 7 categories of change barriers (2):

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Outside of medicine, many industries have explored the reasons behind failure of change management or failure of implementation and have made suggestions intended to facilitate change. While these recommendations make sense, they are often easier said than done. In health care, there is a great deal of “dogma-logy” (the non-scientific practice of doing what you’ve been told to do based on no available evidence) that must be overcome. Implementation researchers suggest “incremental, context-sensitive, evidence-based management strategies for change implementation” and the need for local champions within front line staff (e.g., nurses and unit managers) to drive change (3). This is consistent with lean management. This still may not be enough, especially if the proposed change is perceived as being overly complex or just more work (4).

The evolution of modern communication may help overcome some of the perceived barriers (2). Use of social media, Twitter in particular, may be a powerful tool to rapidly disseminate new knowledge. It can be used to share new journal articles as they are published or exciting research results even before they are published. Physicians can follow their professional societies and scientific journals, but also follow thought leaders, business schools, and economic journals that post on organizational culture and change management. In the era of Twitter chats and “live-tweeting” medical conferences, lack of awareness (#1) or familiarity (#2) is no longer an acceptable excuse.

In addition, social media networks may also provide moral support (#4) through global conversations, and colleagues may provide real-life examples of successful implementation strategies (#5) that may help generate enough motivation to drive change (#6). However, sometimes inertia may be easy to overcome. According to Dr. Audrey Shafer, Stanford Professor and physician anesthesiologist, “There should be some acknowledgement of the complexity-to-benefit ratio. If complexity of the change is low, and the benefit high, then I believe the behavioral change is swifter. The prime example in my lifetime is the use of pulse oximetry. It may have been a long time from the concept of pulse oximetry until the first viable commercially available oximeter was available in clinical practice, but after an anesthesiologist used it once, he/she did not want to do another case without one.”

That still leaves lack of agreement (#3) and external barriers (#7). Even if you don’t agree with the scientific evidence, at least be open to observe. I really like the design thinking approach as described by Ideo and others and think it has a place in health care change implementation. You can download the free toolkit for educators here. I tweeted Ideo’s figure of the design process with its 5 phases recently and got a great response.

Tweet design

This approach makes a lot of sense in medicine. It has many similarities to the way we approach patient care: observe a diagnostic dilemma, order tests and interpret them, consider the differential diagnosis, attempt a treatment, and adjust treatment based on the observed outcome.

To overcome external barriers to change in health care, senior leaders must be engaged and actively participate in improvement efforts (5). I strongly encourage physicians to step up and take on some of these leadership roles. Sometimes saying “yes” to something that seems relatively small will lead to bigger opportunities down the road. By becoming leaders, physicians can be the ones to drive the change that they want to see in clinical practice.

REFERENCES:

  1. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011 Dec;104(12):510-20.
  2. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PA, Rubin HR. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999 Oct 20;282(15):1458-65.
  3. Rangachari P, Rissing P, Rethemeyer K. Awareness of evidence-based practices alone does not translate to implementation: insights from implementation research. Qual Manag Health Care. 2013 Apr-Jun;22(2):117-25.
  4. Grol R. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care. 2001 Aug;39(8 Suppl 2):II46-54.
  5. Pronovost PJ, Berenholtz SM, Goeschel CA, Needham DM, Sexton JB, Thompson DA, Lubomski LH, Marsteller JA, Makary MA, Hunt E. Creating high reliability in health care organizations. Health Serv Res. 2006 Aug;41(4 Pt 2):1599-617.

Related Posts:

Why Doctors Should Be on Twitter

social-media-healthcareI am a physician, clinical researcher, and educator.

I am also on Twitter and tweet under the handle @EMARIANOMD.

Naturally you may ask:  “How does Twitter fit into a physician’s academic career?”  Some of the benefits that Twitter offers doctors have been described previously by Dr. Brian Secemsky and Dr. Marjorie Stiegler among others.  Here are a few reasons of my own:

  • Global Interaction:  Through Twitter I interact with people from around the world with similar interests.  Participating in Twitter chats like #healthxph or #hcldr can foster innovative ideas that may lead to research questions or other educational opportunities.  For example, by tweeting on #kneereplacement, I was invited by orthopedic surgeon, Dr. Brian Hatten, to revise the anesthesia information page on his site, My Knee Guide, an incredible online portal for people considering or undergoing knee replacement surgery.
  • Search Optimization:  On multiple occasions, I have found research articles that my traditional PubMed searches have missed through the tweets posted by colleagues.  I have even been able to relocate certain articles faster on Twitter than PubMed when I know they have been tweeted.  Researchers can think of hashtags (starting with “#”) essentially like keywords in the academic world.  I periodically check #anesthesia, #meded, #pain, and #kneereplacement for new articles related to my research interests.
  • Lifelong Learning:  When I was in training, I used to peruse the pages of JAMA and New England Journal of Medicine (NEJM) in addition to my own specialty’s journals.  Today, it’s difficult to even keep up with new articles just in my own subspecialty.  Now I follow JAMA and NEJM on Twitter.  By following journals, professional societies, and colleagues with similar interests, I honestly feel that my breadth of knowledge has increased beyond what I would have acquired on my own.
  • Research Promotion:  As a clinical researcher, my hope is that my study results will ultimately affect the care of patients.  Sadly, the majority of traditionally-published scientific articles will not be read by anyone besides the authors and reviewers.  Through Twitter, I can alert my followers when our research group publishes an article.  I also get feedback and “peer review” from colleagues around the world.  After a recent publication that I tweeted, I received comments from anesthesiologists in Canada and Europe within an hour!
  • Enriched Conference Experience:  A growing trend at medical conferences is “live-tweeting” the meeting.  One of my own issues when I attend or present at conferences is that I feel like I miss much of the meeting due to scheduling conflicts.  By living vicariously through my colleagues’ tweets at #ASRASpring15 for example, I can pick up pearls of wisdom from speakers in other sessions even while sitting in a different hall.  I can also “virtually” attend conferences by following tweets under the hashtags of meetings like #PCP15 in the Philippines  in the comfort of my own home.

I often get asked:  “Does anyone really care if I tweet what I eat for breakfast?”  Probably not.  The truth is that you don’t have to tweet anything at all if you don’t want to.   Up to 44% of Twitter accounts have never sent a tweet.   Of course, to be a physician actively engaged on Twitter requires respect for patient privacy and professionalism.  I recommend following Dr. John Mandrola’s 10 rules for doctors on social media.

In an interview during Stanford’s Big Data in Biomedicine Conference (video below), I had a chance to explain why I tweet.  I’ll admit that getting started is intimidating, but I encourage you to try it if you haven’t already.   I promise that you won’t regret it, and chances are that you’ll be very happy you did.  If you’re still too worried to take the leap, I suggest reading these tips from Marie Ennis-O’Connor to boost your confidence.  At least sign up, reserve your handle, and observe.

Observation is still a key part of the scientific method.

Related Posts:

Why the VA Inspires Me to be a Better Leader

VA_eagleInscribed on a plaque just below a statue of an eagle in front of my hospital is a famous quote from President Abraham Lincoln that begins, “To care for him who shall have borne the battle….”

It is the reason why the Veterans Affairs (VA) system exists.  It is the reason why we VA physicians come to work each day.

I am honored to care for our special patient population, and I admit to getting defensive when I hear negative, sensationalistic news about the VA.  In truth, VA physicians have good reasons to take pride in their health care system and should be inspired to take on leadership roles.

In 1994, the VA was by far the largest networked health care system in the US.  It consisted of 172 acute care hospitals, 350 hospital-based outpatient clinics, 206 counseling facilities, and 39 residential care facilities, with a budget of over $16 billion annually, and was “highly dysfunctional” according to an article co-authored by Kenneth W. Kizer, MD, MPH, the former Under Secretary of Health under President Clinton who headed the VA health care system from 1995-1999.

A decade later, the VA had turned around dramatically.  When Philip Longman, a writer with a long interest in health policy, looked for potential solutions to the healthcare crisis in the United States, he found his “muse” within the VA—not in the private sector.  He titled his 2007 book about the VA health care system:  Best Care Anywhere: Why VA Health Care is Better Than YoursWhat happened to make the VA go from worst to first?

In the mid-1990s, Dr. Kizer guided the VA to reset its focus on three core missions:

  • Providing medical care to eligible veterans to improve their health and functionality
  • Educating healthcare professionals
  • Conducting research to improve veteran care.

His strategies led to a dramatic transformation that took less than five years.  VA health care showed a statistically-significant improvement in all quality of care indicators after the reengineering when compared to the same indicators before, and these improvements were evident within the first two years.  By 2000, the VA outperformed Medicare hospitals on 12 of 13 quality of care indicators.  A comprehensive study using RAND Quality Assessment Tools showed that VA adherence to recommended processes of care exceeded a comparable national sample.  In terms of surgical care, the VA matched or outperformed non-VA programs in rates of morbidity and mortality.

Integral to this transformation was a remarkable nationwide rollout of an electronic health record in less than three years, with the last facility going live in 1999, long before most health care systems in the United States had even started.  Other notable achievements during this period of reengineering included:

  • 350,000 fewer inpatient admissions (FY 1999 vs. FY 1995) despite a 24% increase in patients treated overall;
  • A decrease in per-patient expenditures by 25%;
  • An increase in proportion of surgeries performed on an ambulatory basis (80% in FY 1999 vs. 35% in FY 1995);
  • A 10% increase in total number of surgeries performed with a decrease in 30-day morbidity and mortality;
  • VA health user satisfaction scores that exceeded the private sector; and
  • Realignment of the VA medical research program with establishment of a new translational research program, the Quality Enhancement Research Initiative (QUERI).

These achievements were not the result of one person’s efforts.  Change implementation required engagement of front line staff, especially the physicians and other health care providers.  Unfortunately last year’s VA waitlist scandal raised serious concerns related to veterans’ access to care, scheduling practices, and the reporting of performance metrics.  In an article published in the New England Journal of Medicine, Dr. Kizer expressed his concerns regarding variability in the quality of care provided within VA in 2014 when compared to other top-tier integrated healthcare systems.  Some VA hospitals performed remarkably well while others did not, and some facilities severely lacked personnel and resources.

Flags FlyingToday, there are approximately 9 million veterans enrolled in VA health care, and the VA needs physicians to step up and be leaders.  Advanced technology (e.g., secure messaging, e-consultation, and clinical video telehealth) already exists within the VA to streamline communication between patients and physicians and can be used to promote patient-centered, personalized health care and improve access.  Some of the highest impact medical research in the world takes place within VA, performed by VA physician scientists, and requires leaders to advocate for continued funding.  The results of these studies and others should form the basis of best clinical practices that VA physician leaders need to disseminate and implement at their respective facilities.  VA physicians have pioneered the field of simulation education, and this represents one tool that may be used to facilitate dissemination.  The VA has arguably the richest and most mature electronic health record in the country, if not the world; yet these data are not easily accessible.  Physicians on the front lines of patient care, those engaged in research, and those in leadership positions need to advocate for resources to develop real-time analytics and harness the power of our patients’ data to guide clinical care decisions and make the health care system adaptable to the changing needs of patients.

Finally, I call on VA physician leaders to be innovators, designing and studying new interdisciplinary coordinated models of care, to improve outcomes and then share these models with each other.  We physicians need to work together as “One VA” to decrease variability within the system and improve quality and value throughout.

This post has also been featured on KevinMD.com

REFERENCES

  1. Kizer KW, Dudley RA: Extreme makeover: Transformation of the veterans health care system. Annu Rev Public Health 2009; 30: 313-39
  2. Jha AK, Perlin JB, Kizer KW, Dudley RA: Effect of the transformation of the Veterans Affairs Health Care System on the quality of care. N Engl J Med 2003; 348: 2218-27
  3. Asch SM, McGlynn EA, Hogan MM, Hayward RA, Shekelle P, Rubenstein L, Keesey J, Adams J, Kerr EA: Comparison of quality of care for patients in the Veterans Health Administration and patients in a national sample. Ann Intern Med 2004; 141: 938-45
  4. Choi JC, Bakaeen FG, Huh J, Dao TK, LeMaire SA, Coselli JS, Chu D: Outcomes of coronary surgery at a Veterans Affairs hospital versus other hospitals. J Surg Res 2009; 156: 150-4
  5. Grover FL, Shroyer AL, Hammermeister K, Edwards FH, Ferguson TB, Jr., Dziuban SW, Jr., Cleveland JC, Jr., Clark RE, McDonald G: A decade’s experience with quality improvement in cardiac surgery using the Veterans Affairs and Society of Thoracic Surgeons national databases. Ann Surg 2001; 234: 464-72
  6. Matula SR, Trivedi AN, Miake-Lye I, Glassman PA, Shekelle P, Asch S: Comparisons of quality of surgical care between the US Department of Veterans Affairs and the private sector. J Am Coll Surg 2010; 211: 823-32
  7. Bakaeen FG, Blaustein A, Kibbe MR: Health care at the VA: recommendations for change. JAMA 2014; 312: 481-2
  8. Kizer KW, Jha AK: Restoring trust in VA health care. N Engl J Med 2014; 371: 295-7

Related Posts:

Multimodal Pain Relief after Knee Replacement

Knee-pain 2Knee replacement is one of the most commonly performed operations in the United States with over 700,000 procedures performed annually (1). Besides providing anesthesia care in the operating room, anesthesiologists are dedicated to providing the best perioperative pain management in order to improve patients’ function and facilitate rehabilitation after surgery. In the past, pain management was limited to the use of opioids (narcotics). Opioids only attack pain in one way, and just adding more opioids does not usually lead to better pain control.

In 2012, the American Society of Anesthesiologists (ASA) published its guidelines for acute pain management in the perioperative setting (2). This document recommends “multimodal analgesia” which means that two or more classes of pain medications or therapies, working with different mechanisms of action, should be used in the treatment of acute pain.

While opioids are still important pain medications, they should be combined with other classes of medications known to help relieve postoperative pain unless contraindicated. These include:

  • Non-steroidal anti-inflammatory drugs (NSAIDs): Examples include ibuprofen, diclofenac, ketorolac, celecoxib. NSAIDs act on the prostaglandin system peripherally and work to decrease inflammation.
  • Acetaminophen: Acetaminophen acts on central prostaglandin synthesis and provides pain relief through multiple mechanisms.
  • Gabapentinoids: Examples include gabapentin and pregabalin. These medications are membrane stabilizers that essentially decrease nerve firing.

The ASA also strongly recommends the use of regional analgesic techniques as part of the multimodal analgesic protocol when indicated.

Epidural Analgesia

When compared to opioids alone, epidural analgesia produces lower pain scores and shorter time to achieve physical therapy goals (3). However, higher dose of local anesthetic (numbing medicine) may lead to muscle weakness that can limit activity (4). In addition, epidural analgesia can lead to common side effects (urinary retention, dizziness, itchiness) and is not selective for the operative leg, meaning that the non-operative leg may also become numb.

Femoral Nerve Block

A peripheral nerve block of the femoral nerve is specific to the operative leg. When compared to opioids alone, a femoral nerve block provides better pain control and leads to higher patient satisfaction (5). One area of controversy is whether a single-injection nerve block or catheter-based technique is preferred. There is evidence to support the use of continuous nerve block catheters to extend the pain relief and opioid-sparing benefits of nerve blocks in patients having major surgery like knee replacement. When a continuous femoral nerve block catheter is used, the pain relief is comparable to an epidural but without the epidural-related side effects (6). One legitimate concern raised over the use of femoral nerve blocks in knee replacement patients is the resulting quadriceps muscle weakness (7).

From Gray's Anatomy
From Gray’s Anatomy

Saphenous Nerve Block (Adductor Canal Block)

The saphenous nerve is the largest sensory branch of the femoral nerve and can be blocked within the adductor canal to provide postoperative pain relief and facilitate rehabilitation (8, 9). In healthy volunteers, quadriceps strength is better preserved when subjects receive an adductor canal block compared to a femoral nerve block (10).

In actual knee replacement patients, quadriceps function decreases regardless of nerve block type after surgery but to a lesser degree with adductor canal blocks (11). Recently there have been reports of quadriceps weakness resulting from adductor canal blocks and catheters that have affected clinical care (12, 13).

Fall Risk

According to a large retrospective study of almost 200,000 cases, the incidence of inpatient falls for patients after TKA is 1.6%, and perioperative use of nerve blocks is not associated with increased risk (14). Patient factors that increase the risk of falls include higher age, male sex, sleep apnea, delirium, anemia requiring blood transfusion, and intraoperative use of general anesthesia (14). The bottom line is that all knee replacement patients are at increased risk for falling due to multiple risk factors, and any clinical pathway should include fall prevention strategies and an emphasis on patient safety.

Other Local Anesthetic Techniques

In addition to a femoral nerve or adductor canal block, a sciatic nerve block is sometimes offered to provide a “complete” block of the leg. There are studies for and against this practice. Arguably, the benefit of a sciatic nerve block does not last beyond the first postoperative day (15). Surgeon-administered local anesthetic around the knee joint (local infiltration analgesia) can be combined with nerve block techniques to provide additional postoperative pain relief for the first few hours after surgery (16, 17).

For more information about anesthetic options for knee replacement, please see my post on My Knee Guide.

References

  1. The Center for Disease Control and Prevention. FastStats: Inpatient Surgery. National Hospital Discharge Survey: 2010 table. http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm. Accessed January 30, 2015.
  2. American Society of Anesthesiologists Task Force on Acute Pain M: Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012, 116(2):248-273.
  3. Mahoney OM, Noble PC, Davidson J, Tullos HS: The effect of continuous epidural analgesia on postoperative pain, rehabilitation, and duration of hospitalization in total knee arthroplasty. Clin Orthop Relat Res 1990(260):30-37.
  4. Raj PP, Knarr DC, Vigdorth E, Denson DD, Pither CE, Hartrick CT, Hopson CN, Edstrom HH: Comparison of continuous epidural infusion of a local anesthetic and administration of systemic narcotics in the management of pain after total knee replacement surgery. Anesth Analg 1987, 66(5):401-406.
  5. Chan EY, Fransen M, Parker DA, Assam PN, Chua N: Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev 2014, 5:CD009941.
  6. Barrington MJ, Olive D, Low K, Scott DA, Brittain J, Choong P: Continuous femoral nerve blockade or epidural analgesia after total knee replacement: a prospective randomized controlled trial. Anesth Analg 2005, 101(6):1824-1829.
  7. Charous MT, Madison SJ, Suresh PJ, Sandhu NS, Loland VJ, Mariano ER, Donohue MC, Dutton PH, Ferguson EJ, Ilfeld BM: Continuous femoral nerve blocks: varying local anesthetic delivery method (bolus versus basal) to minimize quadriceps motor block while maintaining sensory block. Anesthesiology 2011, 115(4):774-781.
  8. Jenstrup MT, Jaeger P, Lund J, Fomsgaard JS, Bache S, Mathiesen O, Larsen TK, Dahl JB: Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty: a randomized study. Acta Anaesthesiol Scand 2012, 56(3):357-364.
  9. Hanson NA, Allen CJ, Hostetter LS, Nagy R, Derby RE, Slee AE, Arslan A, Auyong DB: Continuous ultrasound-guided adductor canal block for total knee arthroplasty: a randomized, double-blind trial. Anesth Analg 2014, 118(6):1370-1377.
  10. Kwofie MK, Shastri UD, Gadsden JC, Sinha SK, Abrams JH, Xu D, Salviz EA: The effects of ultrasound-guided adductor canal block versus femoral nerve block on quadriceps strength and fall risk: a blinded, randomized trial of volunteers. Reg Anesth Pain Med 2013, 38(4):321-325.
  11. Jaeger P, Zaric D, Fomsgaard JS, Hilsted KL, Bjerregaard J, Gyrn J, Mathiesen O, Larsen TK, Dahl JB: Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty: a randomized, double-blind study. Reg Anesth Pain Med 2013, 38(6):526-532.
  12. Chen J, Lesser JB, Hadzic A, Reiss W, Resta-Flarer F: Adductor canal block can result in motor block of the quadriceps muscle. Reg Anesth Pain Med 2014, 39(2):170-171.
  13. Veal C, Auyong DB, Hanson NA, Allen CJ, Strodtbeck W: Delayed quadriceps weakness after continuous adductor canal block for total knee arthroplasty: a case report. Acta Anaesthesiol Scand 2014, 58(3):362-364.
  14. Memtsoudis SG, Danninger T, Rasul R, Poeran J, Gerner P, Stundner O, Mariano ER, Mazumdar M: Inpatient falls after total knee arthroplasty: the role of anesthesia type and peripheral nerve blocks. Anesthesiology 2014, 120(3):551-563.
  15. Abdallah FW, Brull R: Is sciatic nerve block advantageous when combined with femoral nerve block for postoperative analgesia following total knee arthroplasty? A systematic review. Reg Anesth Pain Med 2011, 36(5):493-498.
  16. Mudumbai SC, Kim TE, Howard SK, Workman JJ, Giori N, Woolson S, Ganaway T, King R, Mariano ER: Continuous adductor canal blocks are superior to continuous femoral nerve blocks in promoting early ambulation after TKA. Clin Orthop Relat Res 2014, 472(5):1377-1383.
  17. Mariano ER, Kim TE, Wagner MJ, Funck N, Harrison TK, Walters T, Giori N, Woolson S, Ganaway T, Howard SK: A randomized comparison of proximal and distal ultrasound-guided adductor canal catheter insertion sites for knee arthroplasty. J Ultrasound Med 2014, 33(9):1653-1662.

Related Posts:

Tips for Future Physician Leaders

LeadershipCompass3This post has also been featured on KevinMD.com.

Our health care system needs more physician leaders. Physician-led accountable care organizations have been shown to improve the quality of patient care while reducing overall costs. Physicians, by their nature, tend to be goal-oriented, have the ability to gather and assimilate evidence, and make difficult decisions, but these traits do not always translate naturally into leadership skills. We are trained to make a diagnosis and map out a treatment plan in medical school and residency, but the typical curriculum does not include developing staff, leading teams, or strategic planning. One option to learn these skills is to get an MBA. However, going back to school is not an option for everyone (like me—at least not yet), and it may not be necessary. Besides first being a good doctor, here are a few tips that may help open up leadership opportunities:

1. Be open to possibilities. Sometimes an opportunity doesn’t always look like one. In other words, plans don’t always work out the way you think they will.

2. Say “yes” to things that sound like more work. Pick up that extra call or volunteer for that hospital committee. Saying “yes” can introduce you to many new people and experiences. If you say “yes” then follow through. New colleagues who see you as a finisher often go back to you again and introduce you to others.

3. Let people look after you. This may not be “mentorship” in the traditional sense. A friend of a friend or someone’s spouse you meet at a department function may introduce you to people with similar interests in clinical care, quality improvement, or research.

4. Give credit to others. “Taking credit” is not about featuring an individual or the leader—it should be about the group. You can’t implement change without a team, and as a leader you have to make sure the group gets the recognition it deserves.

5. Given the opportunity, lead and not just manage. “Leadership” and “management” are often used interchangeably (unfortunately), and managerial duties often come with any leadership position, but they are not the same. People want to follow a leader, not a manager.

In healthcare, a leader should set a good example of professionalism in clinical care, communications, and administrative work. A leader creates a shared vision for the group with a clear direction and celebration of the group’s accomplishments. A leader first invests in his or her staff members to develop them individually so their greater potential can benefit the group. A leader is inspired by his or her staff and is constantly listening and learning.

Related Posts:

Extending Nerve Block Pain Relief after Surgery: Review of the Evidence

nerve firingNerve blocks (also referred to as “regional anesthesia”) offer patients many potential advantages in the immediate postoperative period such as decreased pain, nausea and vomiting, and time spent in the recovery room (1,2). However, these beneficial effects are time-limited and do not last beyond the duration of the block (2). While the clinical effects of nerve blocks typically last long enough for patients to meet discharge eligibility from recovery and avoid hospitalization for pain control (3), these results can be easily negated if patients’ pain or opioid-related side effects warrant a return trip to the hospital and readmission following block resolution (4). Thus, extending block duration to provide longer-term, site-specific analgesia for patients on an ambulatory basis has been a high research priority. What options are currently available?

Continuous Peripheral Nerve Blocks

Continuous peripheral nerve block (CPNB) techniques (also known as perineural catheters) permit delivery of local anesthetic solutions to the site of a peripheral nerve on an ongoing basis (5). Portable infusion devices can deliver a solution of plain local anesthetic for days after surgery, often with the ability to titrate the dose up and down or even stop the infusion temporarily when patients feel too numb (6,7). In a meta-analysis comparing CPNB to single-injection peripheral nerve blocks, CPNB results in lower patient-reported worst pain scores and pain scores at rest on postoperative day (POD) 0, 1, and 2 (8). Patients who receive CPNB also experience less nausea, consume less opioids, sleep better, and are more satisfied with pain management (8). We also know how CPNB works: local anesthetic medication interrupts nerve transmission, so patients experience decreased sensation.

Managing CPNB patients (especially at home) can sometimes be challenging, and not all patients are good candidates for outpatient perineural infusion (7). Patients must have a reliable means of follow-up and should have a caretaker at home for at least the first night after surgery (7). A health care provider must be available at all times to manage common issues associated with CPNB and call patients once daily to assess for analgesic efficacy and side effects (9). Patients, especially those undergoing lower extremity surgery, and their caretakers should receive clear instructions regarding the care of their infusion device and catheter as well as their anesthetized extremities (10,11) including fall precautions (12,13).

Although the optimal duration for CPNB is unknown, 2 to 7 days has been reported for orthopedic inpatients (14) with durations as long as 34 days under special circumstances (15). At the completion of the local anesthetic infusion, perineural catheters must be removed. To date, CPNB is the only technique that offers patients the longest potential duration of block paired with the ability to titrate to the desired level of block.

Despite more than a decade of published data supporting CPNB for extending the duration of postoperative pain control, adoption of these techniques is not universal. Many of the issues are arguably system-based, and the lack of a “block” room (16) or time pressure (17) may be responsible. However, lack of training in these techniques may also be a factor (18) or negative experiences with failed placement attempts using traditional techniques (19).

Adjuvants to Local Anesthetic Solutions for Single-Injection Peripheral Nerve Blocks

For nerve blocks intended to last 1-2 days, there are a few options.  Long-acting local anesthetics (e.g., bupivacaine, levobupivacaine, and ropivacaine) generally provide analgesia of similar duration for 24 hours or less (20-23). Several different drugs have been investigated for their potential to extend single-injection peripheral nerve block duration when added to local anesthetic solutions. Epinephrine when added to local anesthetic solutions provides vasoconstriction to decrease uptake but has little or no clinical effect on the duration of longer-acting local anesthetics (24). Opioids in general do not provide additional benefits in terms of duration (25) except for buprenorphine (26) although how it works is unclear. To date, there are insufficient data to support the addition of tramadol or neostigmine to local anesthetic solutions (25). Of the available adjuvants, clonidine has been demonstrated in clinical studies and systematic reviews to extend the duration of analgesia for intermediate-acting local anesthetics (e.g., mepivacaine) with few side effects in doses up to 150 mcg but probably do not extend long-acting local anesthetics (25,27). There has been increasing interest in dexamethasone as an adjuvant to local anesthetic solutions based on clinical reports of extended duration when added to intermediate-acting local anesthetics (28,29). The mechanism is not well understood and may be less pronounced with long-acting local anesthetics; one study reported block durations of only 22 hours with dexamethasone added to either ropivacaine or bupivacaine (30). Giving dexamethasone intravenously may actually produce the same effect (31). Caution is warranted when experimenting with adjuvant mixtures that have not been specifically approved for nerve blocks (i.e., “off-label” use) as many of the usual FDA safeguards have not been performed, and these drugs may contribute to neurotoxicity or other side effects not yet known.

Novel Extended-Duration Local Anesthetics

There has been interest in liposomal formulations of extended-release bupivacaine for regional anesthesia for over two decades (32,33). A recent formulation consisting of bupivacaine encapsulated in multivesicular liposomes to produce slow release is FDA-approved for local infiltration (34) but not yet for nerve blocks although this is expected soon. A nerve block with liposomal bupivacaine can be expected to last 1-3 days. Initial nerve block studies in animals suggest a lower maximum serum concentration with the liposomal formulation compared to plain bupivacaine (35)–unless co-administered with lidocaine which facilitates release of liposomal bupivacaine (36)–and epidural administration in human volunteers more than doubles duration of sensory block (37). Once it receives FDA approval, I expect many comparative studies versus CPNB for postoperative analgesia. There are still concerns regarding local anesthetic systemic toxicity with liposomal bupivacaine as well as prolonged motor block and unpleasant numbness given the drug’s long-lasting effects. In addition, there is no option for “giving more” to augment a block in the event of inadequate pain relief.

In summary, there are currently few options to extend the duration of regional analgesia at home beyond the one day expected from most single-injection nerve blocks. CPNB with plain local anesthetic perineural infusion is the most established way to provide days of postoperative pain control and allows titration, but training in insertion techniques and a system to manage ambulatory CPNB patients are necessary. Adjuvants or liposomal formulations of local anesthetics may offer potential options for limited extension of block duration, but further studies regarding efficacy and safety for regional anesthesia as well as comparative-effectiveness versus CPNB are necessary. For major surgery like total knee replacement, block duration of several days may be optimal (38).

References

  1. Liu SS, Strodtbeck WM, Richman JM, Wu CL: A comparison of regional versus general anesthesia for ambulatory anesthesia: a meta-analysis of randomized controlled trials. Anesth Analg 2005; 101: 1634-42
  2. McCartney CJ, Brull R, Chan VW, Katz J, Abbas S, Graham B, Nova H, Rawson R, Anastakis DJ, von Schroeder H: Early but no long-term benefit of regional compared with general anesthesia for ambulatory hand surgery. Anesthesiology 2004; 101: 461-7
  3. Williams BA, Kentor ML, Vogt MT, Williams JP, Chelly JE, Valalik S, Harner CD, Fu FH: Femoral-sciatic nerve blocks for complex outpatient knee surgery are associated with less postoperative pain before same-day discharge: a review of 1,200 consecutive cases from the period 1996-1999. Anesthesiology 2003; 98: 1206-13
  4. Williams BA, Kentor ML, Vogt MT, Vogt WB, Coley KC, Williams JP, Roberts MS, Chelly JE, Harner CD, Fu FH: Economics of nerve block pain management after anterior cruciate ligament reconstruction: potential hospital cost savings via associated postanesthesia care unit bypass and same-day discharge. Anesthesiology 2004; 100: 697-706
  5. Ilfeld BM: Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904-25
  6. Ilfeld BM: Continuous peripheral nerve blocks in the hospital and at home. Anesthesiol Clin 2011; 29: 193-211
  7. Ilfeld BM, Enneking FK: Continuous peripheral nerve blocks at home: a review. Anesth Analg 2005; 100: 1822-33
  8. Bingham AE, Fu R, Horn JL, Abrahams MS: Continuous peripheral nerve block compared with single-injection peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Reg Anesth Pain Med 2012; 37: 583-94
  9. Ilfeld BM, Esener DE, Morey TE, Enneking FK: Ambulatory perineural infusion: the patients’ perspective. Reg Anesth Pain Med 2003; 28: 418-23
  10. Charous MT, Madison SJ, Suresh PJ, Sandhu NS, Loland VJ, Mariano ER, Donohue MC, Dutton PH, Ferguson EJ, Ilfeld BM: Continuous femoral nerve blocks: varying local anesthetic delivery method (bolus versus basal) to minimize quadriceps motor block while maintaining sensory block. Anesthesiology 2011; 115: 774-81
  11. Ilfeld BM, Moeller LK, Mariano ER, Loland VJ, Stevens-Lapsley JE, Fleisher AS, Girard PJ, Donohue MC, Ferguson EJ, Ball ST: Continuous peripheral nerve blocks: is local anesthetic dose the only factor, or do concentration and volume influence infusion effects as well? Anesthesiology 2010; 112: 347-54
  12. Feibel RJ, Dervin GF, Kim PR, Beaule PE: Major complications associated with femoral nerve catheters for knee arthroplasty: a word of caution. J Arthroplasty 2009; 24: 132-7
  13. Ilfeld BM, Duke KB, Donohue MC: The association between lower extremity continuous peripheral nerve blocks and patient falls after knee and hip arthroplasty. Anesth Analg 2010; 111: 1552-4
  14. Capdevila X, Pirat P, Bringuier S, Gaertner E, Singelyn F, Bernard N, Choquet O, Bouaziz H, Bonnet F: Continuous peripheral nerve blocks in hospital wards after orthopedic surgery: a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients. Anesthesiology 2005; 103: 1035-45
  15. Stojadinovic A, Auton A, Peoples GE, McKnight GM, Shields C, Croll SM, Bleckner LL, Winkley J, Maniscalco-Theberge ME, Buckenmaier CC, 3rd: Responding to challenges in modern combat casualty care: innovative use of advanced regional anesthesia. Pain Med 2006; 7: 330-8
  16. Mariano ER, Chu LF, Peinado CR, Mazzei WJ: Anesthesia-controlled time and turnover time for ambulatory upper extremity surgery performed with regional versus general anesthesia. J Clin Anesth 2009; 21: 253-7
  17. Oldman M, McCartney CJ, Leung A, Rawson R, Perlas A, Gadsden J, Chan VW: A survey of orthopedic surgeons’ attitudes and knowledge regarding regional anesthesia. Anesth Analg 2004; 98: 1486-90, table of contents
  18. Hadzic A, Vloka JD, Kuroda MM, Koorn R, Birnbach DJ: The practice of peripheral nerve blocks in the United States: a national survey [p2e comments]. Reg Anesth Pain Med 1998; 23: 241-6
  19. Salinas FV: Location, location, location: Continuous peripheral nerve blocks and stimulating catheters. Reg Anesth Pain Med 2003; 28: 79-82
  20. Casati A, Borghi B, Fanelli G, Cerchierini E, Santorsola R, Sassoli V, Grispigni C, Torri G: A double-blinded, randomized comparison of either 0.5% levobupivacaine or 0.5% ropivacaine for sciatic nerve block. Anesth Analg 2002; 94: 987-90
  21. Hickey R, Hoffman J, Ramamurthy S: A comparison of ropivacaine 0.5% and bupivacaine 0.5% for brachial plexus block. Anesthesiology 1991; 74: 639-42
  22. Klein SM, Greengrass RA, Steele SM, D’Ercole FJ, Speer KP, Gleason DH, DeLong ER, Warner DS: A comparison of 0.5% bupivacaine, 0.5% ropivacaine, and 0.75% ropivacaine for interscalene brachial plexus block. Anesth Analg 1998; 87: 1316-9
  23. Fanelli G, Casati A, Beccaria P, Aldegheri G, Berti M, Tarantino F, Torri G: A double-blind comparison of ropivacaine, bupivacaine, and mepivacaine during sciatic and femoral nerve blockade. Anesth Analg 1998; 87: 597-600
  24. Weber A, Fournier R, Van Gessel E, Riand N, Gamulin Z: Epinephrine does not prolong the analgesia of 20 mL ropivacaine 0.5% or 0.2% in a femoral three-in-one block. Anesth Analg 2001; 93: 1327-31
  25. Murphy DB, McCartney CJ, Chan VW: Novel analgesic adjuncts for brachial plexus block: a systematic review. Anesth Analg 2000; 90: 1122-8
  26. Candido KD, Franco CD, Khan MA, Winnie AP, Raja DS: Buprenorphine added to the local anesthetic for brachial plexus block to provide postoperative analgesia in outpatients. Reg Anesth Pain Med 2001; 26: 352-6
  27. McCartney CJ, Duggan E, Apatu E: Should we add clonidine to local anesthetic for peripheral nerve blockade? A qualitative systematic review of the literature. Reg Anesth Pain Med 2007; 32: 330-8
  28. Movafegh A, Razazian M, Hajimaohamadi F, Meysamie A: Dexamethasone added to lidocaine prolongs axillary brachial plexus blockade. Anesth Analg 2006; 102: 263-7
  29. Parrington SJ, O’Donnell D, Chan VW, Brown-Shreves D, Subramanyam R, Qu M, Brull R: Dexamethasone added to mepivacaine prolongs the duration of analgesia after supraclavicular brachial plexus blockade. Reg Anesth Pain Med 2010; 35: 422-6
  30. Cummings KC, 3rd, Napierkowski DE, Parra-Sanchez I, Kurz A, Dalton JE, Brems JJ, Sessler DI: Effect of dexamethasone on the duration of interscalene nerve blocks with ropivacaine or bupivacaine. Br J Anaesth 2011; 107: 446-53
  31. Desmet M, Braems H, Reynvoet M, et al: I.V. and perineural dexamethasone are equivalent in increasing the analgesic duration of a single-shot interscalene block with ropivacaine for shoulder surgery: a prospective, randomized, placebo-controlled study. Br J Anaesth 2013; 111: 445-52
  32. Boogaerts J, Lafont N, Donnay M, Luo H, Legros FJ: Motor blockade and absence of local nerve toxicity induced by liposomal bupivacaine injected into the brachial plexus of rabbits. Acta Anaesthesiol Belg 1995; 46: 19-24
  33. Boogaerts JG, Lafont ND, Declercq AG, Luo HC, Gravet ET, Bianchi JA, Legros FJ: Epidural administration of liposome-associated bupivacaine for the management of postsurgical pain: a first study. J Clin Anesth 1994; 6: 315-20
  34. Chahar P, Cummings KC, 3rd: Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res 2012; 5: 257-64
  35. Richard BM, Newton P, Ott LR, Haan D, Brubaker AN, Cole PI, Ross PE, Rebelatto MC, Nelson KG: The Safety of EXPAREL (R) (Bupivacaine Liposome Injectable Suspension) Administered by Peripheral Nerve Block in Rabbits and Dogs. J Drug Deliv 2012; 2012: 962101
  36. Richard BM, Rickert DE, Doolittle D, Mize A, Liu J, Lawson CF: Pharmacokinetic Compatibility Study of Lidocaine with EXPAREL in Yucatan Miniature Pigs. ISRN Pharm 2011; 2011: 582351
  37. Viscusi ER, Candiotti KA, Onel E, Morren M, Ludbrook GL: The pharmacokinetics and pharmacodynamics of liposome bupivacaine administered via a single epidural injection to healthy volunteers. Reg Anesth Pain Med 2012; 37: 616-22
  38. Lavand’homme PM, Grosu I, France MN, Thienpont E: Pain trajectories identify patients at risk of persistent pain after knee arthroplasty: an observational study. Clin Orthop Relat Res 2014; 472: 1409-15.

Related Posts:

Ultrasound in Regional Anesthesia: What is the Evidence?

Medical scannerThe use of ultrasound guidance in the practice of regional anesthesia arguably began in the late 1980s (1), although ultrasound Doppler technology was used to direct needle insertion for peripheral nerve blockade in the 1970s (2). This past decade has seen a rapid increase in practical applications and clinical research in the field of ultrasound-guided regional anesthesia (UGRA), and the American Society of Regional Anesthesia and Pain Medicine (ASRA) and European Society of Regional Anesthesia have even published joint committee guidelines for training in this discipline (3).

Given the rapid adoption of UGRA, evidence to support this practice was initially limited; however, many studies have emerged in an attempt to define the role of ultrasound. In 2010, ASRA published a series of important articles which distill the body of evidence related to UGRA up to that time point (4-13). Additional studies have been completed and published since 2010 and will be included in an update that should be published in the next year.

Ultrasound Guidance for Extremity Peripheral Nerve Blocks

The 2010 ASRA systematic reviews covering this subject include 24 RCTs which compare ultrasound guidance to an alternative nerve localization technique for either upper or lower extremity peripheral nerve blockade (5). For both upper and lower extremity blocks, the majority of studies report faster block onset when ultrasound is employed (5,6,11), although 5 of 15 studies in the upper extremity and 2 of 5 studies in the lower extremity fail to find a difference in onset time (5). There is evidence to support a decrease in procedural time when ultrasound is used for upper and lower extremity blocks (6-11); however, set-up time and pre-scanning with ultrasound are not consistently measured or reported. In terms of block quality, lower extremity studies are more likely to report an advantage with ultrasound than upper extremity studies; only 4 of 16 upper extremity studies show improvement with ultrasound, and these studies use nerve stimulation or transarterial injection as the comparator (5). When a fixed time point is used for assessing block success, ultrasound use is more likely to show an advantage although the definitions of successful block vary widely (6,11). Only one study in the upper extremity shows a difference in block duration in favor of ultrasound while all other RCTs do not demonstrate a difference (5). For femoral and subgluteal sciatic nerve blocks, ultrasound use decreases the minimum effective anesthesia volume to achieve a successful block in 50% of patients (11).

Ultrasound for Continuous Peripheral Nerve Blocks

Although many large case series describing ultrasound-guided techniques for continuous peripheral nerve block (CPNB) performance have been published, there are relatively-fewer RCTs comparing ultrasound to other nerve localization techniques for CPNB. When an exclusively ultrasound-guided technique is compared to a stimulating catheter technique, procedural duration is shorter with ultrasound at four distinct insertion sites (14-17) with less procedure-related pain for lower extremity catheters (14,16) and fewer inadvertent vascular punctures for femoral and infraclavicular catheters (14,15). Most studies report similar analgesia and other acute pain outcomes from catheters placed with ultrasound when compared to other methods (18-20), with the exception of one study involving popliteal-sciatic catheters which suggests that stimulating catheters may provide an analgesic advantage although successful placement occurs less often (21).

Ultrasound for Truncal and Neuraxial Blocks

To date, RCTs comparing ultrasound guidance to traditional techniques for paravertebral blockade or transversus abdominis plane (TAP) blocks have yet to be reported. For both of these procedures, the 2010 ASRA systematic review recommends the use of ultrasound although this recommendation is based on case series data only (4). In one study comparing ultrasound-guided TAP to conventional ilioinguinal/iliohypogastric nerve blocks for inguinal hernia repair, subjects who received ultrasound-guided TAP blocks reported lower pain scores for the first 24 hours (22). Ultrasound-guidance and the landmark-based technique for ilioinguinal/iliohypogastric nerve blocks have been compared in children with the ultrasound-guided technique resulting in decreased need for systemic analgesic supplementation (23). For neuraxial blocks, there is evidence to support ultrasound scanning prior to employing conventional neuraxial block techniques rather than relying solely on surface landmarks (10), especially in patients with challenging anatomy (24).

Ultrasound for Regional Anesthesia in Special Populations

Ultrasound-guided techniques for peripheral (25) and neuraxial (26) blocks in children have been described previously. The 2010 ASRA evidence-based review on ultrasound for pediatric regional anesthesia included 6 RCTs involving peripheral nerve blocks and one randomized trial in neuraxial blockade in addition to case series of >10 patients (12). In this population, ultrasound may improve the speed of block onset and duration of analgesia, increase success rates for truncal blocks compared to blind techniques, and reduce the volume of local anesthetic required (12). In obese patients, ultrasound may play a role in identifying target peripheral and neuraxial structures as well as real-time procedural performance (27). When performing CPNB in obese patients, procedural time is not prolonged compared to non-obese patients when as long as ultrasound is used (28).

MedianIn summary, there is sufficient evidence to support the use of ultrasound guidance for peripheral nerve blockade based on short-term outcomes, and the results of a large prospective registry study suggest that ultrasound may decrease in the risk of local anesthetic systemic toxicity (29). Additional prospective studies are needed to further define the role of ultrasound in neuraxial blockade, long-term patient outcomes, and advantages in special populations.

References

  1. Ting PL, Sivagnanaratnam V: Ultrasonographic study of the spread of local anaesthetic during axillary brachial plexus block. Br J Anaesth 1989; 63: 326-9
  2. la Grange P, Foster PA, Pretorius LK: Application of the Doppler ultrasound bloodflow detector in supraclavicular brachial plexus block. Br J Anaesth 1978; 50: 965-7
  3. Sites BD, Chan VW, Neal JM, Weller R, Grau T, Koscielniak-Nielsen ZJ, Ivani G: The American Society of Regional Anesthesia and Pain Medicine and the European Society Of Regional Anaesthesia and Pain Therapy Joint Committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2009; 34: 40-6
  4. Abrahams MS, Horn JL, Noles LM, Aziz MF: Evidence-based medicine: ultrasound guidance for truncal blocks. Reg Anesth Pain Med 2010; 35: S36-42
  5. Liu SS, Ngeow J, John RS: Evidence basis for ultrasound-guided block characteristics: onset, quality, and duration. Reg Anesth Pain Med 2010; 35: S26-35
  6. McCartney CJ, Lin L, Shastri U: Evidence basis for the use of ultrasound for upper-extremity blocks. Reg Anesth Pain Med 2010; 35: S10-5
  7. Narouze SN: Ultrasound-guided interventional procedures in pain management: Evidence-based medicine. Reg Anesth Pain Med 2010; 35: S55-8
  8. Neal JM: Ultrasound-guided regional anesthesia and patient safety: An evidence-based analysis. Reg Anesth Pain Med 2010; 35: S59-67
  9. Neal JM, Brull R, Chan VW, Grant SA, Horn JL, Liu SS, McCartney CJ, Narouze SN, Perlas A, Salinas FV, Sites BD, Tsui BC: The ASRA evidence-based medicine assessment of ultrasound-guided regional anesthesia and pain medicine: Executive summary. Reg Anesth Pain Med 2010; 35: S1-9
  10. Perlas A: Evidence for the use of ultrasound in neuraxial blocks. Reg Anesth Pain Med 2010; 35: S43-6
  11. Salinas FV: Ultrasound and review of evidence for lower extremity peripheral nerve blocks. Reg Anesth Pain Med 2010; 35: S16-25
  12. Tsui BC, Pillay JJ: Evidence-based medicine: Assessment of ultrasound imaging for regional anesthesia in infants, children, and adolescents. Reg Anesth Pain Med 2010; 35: S47-54
  13. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ: Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1-12
  14. Mariano ER, Cheng GS, Choy LP, Loland VJ, Bellars RH, Sandhu NS, Bishop ML, Lee DK, Maldonado RC, Ilfeld BM: Electrical stimulation versus ultrasound guidance for popliteal-sciatic perineural catheter insertion: a randomized controlled trial. Reg Anesth Pain Med 2009; 34: 480-5
  15. Mariano ER, Loland VJ, Bellars RH, Sandhu NS, Bishop ML, Abrams RA, Meunier MJ, Maldonado RC, Ferguson EJ, Ilfeld BM: Ultrasound guidance versus electrical stimulation for infraclavicular brachial plexus perineural catheter insertion. J Ultrasound Med 2009; 28: 1211-8
  16. Mariano ER, Loland VJ, Sandhu NS, Bellars RH, Bishop ML, Afra R, Ball ST, Meyer RS, Maldonado RC, Ilfeld BM: Ultrasound guidance versus electrical stimulation for femoral perineural catheter insertion. J Ultrasound Med 2009; 28: 1453-60
  17. Mariano ER, Loland VJ, Sandhu NS, Bellars RH, Bishop ML, Meunier MJ, Afra R, Ferguson EJ, Ilfeld BM: A trainee-based randomized comparison of stimulating interscalene perineural catheters with a new technique using ultrasound guidance alone. J Ultrasound Med 2010; 29: 329-336
  18. Ilfeld BM: Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904-25
  19. Fredrickson MJ, Danesh-Clough TK: Ambulatory continuous femoral analgesia for major knee surgery: a randomised study of ultrasound-guided femoral catheter placement. Anaesth Intensive Care 2009; 37: 758-66
  20. Choi S, Brull R: Is ultrasound guidance advantageous for interventional pain management? A review of acute pain outcomes. Anesth Analg 2011; 113: 596-604
  21. Mariano ER, Loland VJ, Sandhu NS, Bishop ML, Lee DK, Schwartz AK, Girard PJ, Ferguson EJ, Ilfeld BM: Comparative efficacy of ultrasound-guided and stimulating popliteal-sciatic perineural catheters for postoperative analgesia. Can J Anaesth 2010; 57: 919-926
  22. Aveline C, Le Hetet H, Le Roux A, Vautier P, Cognet F, Vinet E, Tison C, Bonnet F: Comparison between ultrasound-guided transversus abdominis plane and conventional ilioinguinal/iliohypogastric nerve blocks for day-case open inguinal hernia repair. Br J Anaesth 2011; 106: 380-6
  23. Willschke H, Marhofer P, Bosenberg A, Johnston S, Wanzel O, Cox SG, Sitzwohl C, Kapral S: Ultrasonography for ilioinguinal/iliohypogastric nerve blocks in children. Br J Anaesth 2005; 95: 226-30
  24. Chin KJ, Perlas A, Chan V, Brown-Shreves D, Koshkin A, Vaishnav V: Ultrasound imaging facilitates spinal anesthesia in adults with difficult surface anatomic landmarks. Anesthesiology 2011; 115: 94-101
  25. Tsui B, Suresh S: Ultrasound imaging for regional anesthesia in infants, children, and adolescents: a review of current literature and its application in the practice of extremity and trunk blocks. Anesthesiology 2010; 112: 473-92
  26. Tsui BC, Suresh S: Ultrasound imaging for regional anesthesia in infants, children, and adolescents: a review of current literature and its application in the practice of neuraxial blocks. Anesthesiology 2010; 112: 719-28
  27. Brodsky JB, Mariano ER: Regional anaesthesia in the obese patient: lost landmarks and evolving ultrasound guidance. Best Pract Res Clin Anaesthesiol 2011; 25: 61-72
  28. Mariano ER, Brodsky JB: Comparison of procedural times for ultrasound-guided perineural catheter insertion in obese and nonobese patients. J Ultrasound Med 2011; 30: 1357-61
  29. Barrington MJ, Kluger R: Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg Anesth Pain Med 2013; 38: 289-297

 

Related Posts:

Hints for Anesthesiology Residency Applicants

Job-InterviewThis post is co-authored by Dr. Kyle Harrison (@KyleHarrisonMD) and has also been featured on CSA Online First.

So, you’ve finished your third year of medical school and have decided that you want to be an anesthesiologist. In our completely biased opinion, you are making the right choice and, at the end of your residency training, you will be in a unique position to enhance the experience and improve the outcomes of patients undergoing surgery and invasive procedures. However, securing a coveted slot in an anesthesiology residency in the United States has never been more competitive. In the many years that we have spent as faculty in academic anesthesiology departments, we have learned a few things about the application process. Our views are our own and do not reflect the official views of any anesthesiology residency program with which we have been affiliated. The following are some (hopefully helpful) answers to common questions that we have been asked over the years.

How High Do My USMLE Score and GPA Have to Be?
Competitive scores are essential. We can’t quote you a number because they vary year to year and program to program, but the trend is only increasing. All medical students, regardless of school, applying in anesthesiology must do well on the USMLE. Think about it — this is the only equalizing factor between schools that teach differently or have different reputations. Having a great score doesn’t guarantee you admission, but if your scores are not competitive, you will have an uphill battle to get a residency slot at a top program. The value of the standardized test score in learning is often debated in academia; however, no one will argue against the conclusion that previous success on standardized tests usually predicts future success on standardized tests. Residency training is demanding. Programs want their residents 100 percent committed and not worrying too much about how they will perform on their annual in-training exams and eventual certification exam.

Do I Need to Have Research Experience?
No program will ever discourage applicants with research experience from applying; we would say that it is not required but is recommended. Don’t do it for the sake of doing it, but definitely do it if you can find a project that you are passionate about. While research in anesthesiology or pain makes sense (shows academic interest in the chosen field), it can really be in any area. It is more impressive to be involved in a project (big or small), see it through, and maybe even present at a meeting or publish in a journal, than to just say you did “research.” If you do list research on your application or curriculum, make sure you can talk about the project, your specific role, and what you learned from it; you will be asked. If you are not interested in research, then consider focusing on another aspect of extracurricular life such as community service.

What Should Be on My List of Extracurricular Activities?
If there is something about you that is really different, it’s helpful to mention it. Again, the application process isn’t perfect, but the file you submit is all the information program coordinators and directors have. If you have done something special — climbed Mt. Everest, set up HIV clinics in Africa, won Olympic medals, had a previous career — or do something noteworthy, such as volunteer extensively in your community, play an instrument, or dance professionally, mention those things. Yes, we have actually seen these applicants (and interviewed them of course)! Selection committee members often apply the “3 a.m. call rule” when reviewing an applicant. This is: Would you like to be on call in the middle of the night with this person? Applicants viewed as hardworking, clinically competent, and interesting to talk to should result in a solid “yes.” If you just like to run in your free time, mentioning that probably doesn’t make a huge difference in the application.

Do I Need to Do an Anesthesiology Rotation?
You should do an anesthesiology rotation at your local institution at the very least. Programs want to know if you understand what you’re getting yourself into. And it does make a difference how well you did on the rotation. Many students approach their anesthesiology rotation as the “intubation and IV insertion” rotation. Most anesthesiologists like us are passionate about their specialty, and the specialty itself in rapidly evolving (familiarize yourself with the Perioperative Surgical Home model). Trust us — we can tell when a student is genuinely interested in anesthesiology, or not. In our experience, medical students who stand out pay attention to what is going on in the perioperative period, anticipate events, know how to be helpful, get involved with the entire patient care episode (starting with the preoperative evaluation, through giving report to the nurse in the recovery room, and even including postoperative follow-up). It is never impressive to see a medical student standing around looking bored. There is always something to do — for example, when a patient arrives in the OR, you can start applying monitors without prompting, or help with positioning. Residents and staff anesthesiologists recognize these things and reward you by getting you more involved with patient care, including procedures.

Who Should Write My Letters of Recommendation?
The dean’s letter is the big one and counts the most. The form of the dean’s letter is usually standardized, so residency program directors have to weed through all the verbiage to get the information they want. It helps when the dean’s letter includes the student’s rank and any special merits (e.g., AOA). Additional letters should be written by faculty members who really know you and can provide helpful content — research mentor, career advisor, staff physician with whom you have worked closely. It doesn’t add strength to an application to have a lot of generic letters (quality over quantity); three strong letters are better than two strong plus three average letters, since the strong letters may get lost in the sea of information in the applicant’s file.

interview-panel-ace

What Else Can I Do to Improve My Chances?
Unfortunately there are no guarantees. The “gatekeeper” is the initial electronic application. With anesthesiology departments receiving hundreds of applications each year, most will sound exactly the same. “I love pharmacology and physiology” (while possibly true for some) only takes you so far. Something unique about the applicant has to come through the pages. Excellent grades and USMLE scores, strong dean’s letter and other recommendations, personal experiences, prior careers, other degrees, thought-provoking research, a list of activities, and a unique personal statement — anything that sets you apart from the pack can make a difference!

Related Posts:

Personalized Medicine: What it Means to be a Physician Anesthesiologist

This post has also been featured on KevinMD.com.

I wear a lot of hats in my job. Though I’m a physician who specializes in the practice of anesthesiology, I don’t spend all day every day at the head of an operating room table.

Team Photo 2Many days I spend in an administrative leadership role or conducting research studies. These functions support the best interests of my patients as well as the science and practice of anesthesiology. On my “clinical” days that I spend in hands-on patient care, I provide anesthesia for patients who undergo surgery and other invasive procedures. I also treat acute pain as a consultant. Some of my colleagues in anesthesiology specialize in chronic pain or critical care medicine.

As a medical student, I had a hard time at first understanding what the physician anesthesiologist does. I saw monitors, complicated equipment, and technical procedures that involved a lot of needles. Thankfully, I worked with resident and attending anesthesiologists who inspired me to pursue this specialty.

Anesthesiology is a unique field within medicine. It is at the same time incredibly cerebral and extremely physical. For example, the physician anesthesiologist must be ready to diagnose heart or lung problems that may complicate the patient’s surgery, and decide which medications are appropriate.

BefoAnesthesiologist-4re administering a medication, it’s not enough just to understand the complex pharmacologic effects of the drug and determine the right dose. The anesthesiologist also has to know how to dilute and prepare the drug, the appropriate route for the medication, which other medications are and are not compatible, and how to program the infusion device. In addition, an anesthesiologist has to be technically skilled at finding veins—sometimes in the hand or arm, sometimes leading centrally to the heart—in order to give the medication in the first place.

I am always aware of the trust that patients and their families give me, a total stranger, and I work hard to earn that trust throughout the perioperative period. The job of the physician anesthesiologist is deeply personal. In the operating room, I care for the most vulnerable of patients—those who, while under anesthesia, cannot care for themselves.

– I constantly listen to the sounds of their hearts.
– I breathe for them when they are unable.
– I keep them warm in the cold operating room.
– I provide the fluids that their bodies need.
– I pad their arms and legs and other pressure points.
– I watch the operation step by step, anticipating and responding.
– I learn from their bodies’ response to anesthesia to give the right amount.
– I prevent and relieve their pain.
– I protect them from dangers of which they are unaware.

I have heard people, my colleagues included, compare physician anesthesiologists to pilots. No one claps when the plane lands, just as no one expects any less than a perfect uncomplicated anesthetic every time. We physician anesthesiologists draw great personal satisfaction from doing what we do, and from providing a unique type of personalized medicine. Our patients and their families depend on us to be at our best, always.

Related Posts: