Tag Archives: change implementation

Starting an Acute Pain Medicine Program: Strategies for Success

Initiating an acute pain medicine program can add significant value to a hospital and anesthesiology practice through improved postoperative pain control, faster recovery, decreased side effects, and higher patient satisfaction. In a special issue of Anesthesiology News, I published an article which presents a few suggested strategies. You can view and download this article here.

In an accompanying video interview, I was asked about the evolution of ultrasound in regional anesthesia practice as well as the growing role of ultrasound in perioperative medicine.

Related Posts:

Changing Clinical Practice Doesn’t Have to Take So Long

Guest post by Seshadri Mudumbai, MD, MS.  Dr. Mudumbai is an Assistant Professor of Anesthesiology, Perioperative and Pain Medicine at Stanford University School of Medicine. He is also a health services researcher and physician anesthesiologist at the Veterans Affairs Palo Alto Health Care System.

time-for-changeChanging physician behavior is rarely easy, and studies show that it can take an average of 17 years before research evidence becomes widely adopted in clinical practice. One study published in JAMA has identified 7 categories of change barriers:

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Why Change?

According to the Institute of Medicine’s Crossing the Quality Chasm: a New Health System for the 21st Century:  “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”  Our group has focused our efforts on implementing updated evidence-based medicine initiatives for surgical patients with a special emphasis on the total knee replacement population.  Knee replacement is already one of the most common types of surgery in the United States (over 700,000 procedures per year).  Given an aging population, the volume of knee replacement surgeries is expected to increase to over 3 million by the year 2030.

We now have sufficient evidence to support “neuraxial anesthesia” (such as a spinal or epidural) as the preferred intraoperative anesthetic technique for knee replacement patients.  With neuraxial anesthesia, an injection in the back temporarily numbs the legs and allows for painless surgery of the knee.  Several studies have now shown better outcomes and fewer complications after knee replacement surgery with neuraxial anesthesia when compared with general anesthesia.  Despite these known benefits, a large study evaluating data from approximately 200,000 knee replacement patients across the United States reveals that use of neuraxial anesthesia occurs in less than 30% of cases.  At our facility prior to changing our practice, we noted a 13% rate of neuraxial anesthesia utilization.  In the face of growing evidence, we chose to change our practice, and the results of these efforts are reported in our recently published article.

How Did We Start?

An important tool used to coordinate the perioperative care of knee replacement patients has long been the clinical pathway.  A clinical pathway is a detailed care plan for the period before, during, and after surgery that covers multiple disciplines:  surgery, anesthesiology and pain management, nursing, physical and occupational therapy, and sometimes more.   The concept of the clinical pathway should be dynamic and not static.  This requires a process to ensure clinical pathways are periodically updated and someone to take a leadership role in managing the process.

At our institution, we established a coordinated care model known as the Perioperative Surgical Home (PSH).  The PSH provides the overall structure and coordination for perioperative care, and multiple clinical pathways exist within this structure.  With a PSH, physician anesthesiologists are charged with providing leadership and oversight of specific clinical pathways, collecting and reviewing data, engaging frontline healthcare staff and managers across disciplines, and suggesting changes or updates to clinical pathways as new evidence emerges.

Within our PSH model, we invested in a 5 month process to change our preferred anesthetic technique from general anesthesia to neuraxial anesthesia within the clinical pathway for knee replacement patients.  This process involved many steps and followed the Consolidated Framework for Implementation Research:

  1. Literature review and interdepartmental presentation
  2. Development of a work document
  3. Training of staff
  4. Prospective collection of data with feedback to staff.

After one year, the overall percentage of knee replacement patients receiving neuraxial anesthesia increased to 63% from 13%, and a statistically-significant increase in neuraxial anesthesia use took place within one month of the updated clinical pathway rollout.

How Do We Keep It Going?

Neuraxial anesthesia continues to be the predominant anesthetic technique that our knee replacement patients receive today.  We attribute the ongoing success of this change to multidisciplinary collaboration, physician leadership in the form of a departmental champion, peer support and feedback, frequent open communication, and engagement and support from facility leadership.  The results of our study and experience show that a PSH may help facilitate changes in clinical practice quicker than other less-coordinated models of care.  As PSH models continue to be developed, further evidence to support the impact of clinical practice changes on patient-oriented outcomes related to quality and safety and healthcare economics is needed.

For patient education materials regarding anesthetic options for knee replacement surgery, please visit My Knee Guide.

 

 

Related Posts:

Reality and the Ivory Tower

At our conferences and workshops focused on regional anesthesiology and acute pain medicine, we present and discuss the latest and greatest advances in nerve block techniques for patients having surgery.  As physicians and scientists, we are very familiar with the evidence supporting the use of nerve blocks for postoperative pain management.  We know they are extremely effective in preventing and treating pain, decreasing the need for opioid medications, and even avoiding the common side effects of general anesthesia such as nausea and vomiting and confusion.

ASRA 2015

We believe in them.  

We are passionate about them.  

We want all patients to have access to them.

Within the meeting sessions and sometimes in the common spaces outside the lecture halls, regional anesthesiologists often vigorously debate various things like:  the best sites and techniques for nerve block injections, needle and catheter equipment, ultrasound transducers and machines, and local anesthetic selection and use of adjuvants among other things.  

For knee replacement patients in particular, we want to provide the best form of pain management while maximizing their postoperative function.  Since 2011, dozens of research articles have studied the more distal adductor canal block for pain management in patients who undergo knee replacement as a replacement for the long-standing incumbent, the femoral nerve block.  In reality, these sites of nerve block placement are mere centimeters apart and represent different sites of injection along the same set of nerves.  Anesthesiologists and surgeons continue to debate this issue in person, in social media, and in publications.

It’s time for a reality check.

I had the opportunity to do a big data study with my friend and colleague, Dr. Stavros Memtsoudis.  In this study of over 191,000 knee replacement patients who had surgery across over 400 hospitals in the United States, only 12.1% of all patients had a peripheral nerve block of any kind!  Over 76% of patients had general anesthesia alone with no other regional analgesic technique. 

A more recent study published this month in the Journal of Arthroplasty evaluated over 219,000 patients who underwent knee replacement, and only 27.3% of patients received a peripheral nerve block.  The database used for this study was NACOR, operated by the Anesthesia Quality Institute and the American Society of Anesthesiologists.  This was brought to my attention through a Tweet sent by My Knee Guide (@mykneeguide).

Screenshot_20160817-203011

Where is the disconnect?  The efficacy of peripheral nerve blocks for pain control in patients having knee arthroplasty was first published more than 25 years ago.  It is easy to assume that such well-established evidence is being applied daily in clinical practice for the hundreds of thousands of patients who receive this surgery every year, but it’s not.  Today, there is more awareness than ever about the risks of opioids, and nerve blocks offer proven opioid-sparing pain relief.  Perhaps this is just another example of the gap separating the “ivory tower” of academics and real life.

In a previous post, I wrote about the obstacles to changing clinical practice, and there are many:

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Maybe it’s time to focus less on debating minor differences in the ways we do blocks and focus more on figuring out how to make sure more patients actually get them.  

Related Posts:

Changing Clinical Practice Shouldn’t Take So Long

An interesting article I read recently confirmed previous studies’ estimation that it takes an average of 17 years before research evidence becomes widely adopted in clinical practice (1)–17 years!

In this article, Morris and colleagues differentiate “translational research” into two types: Type 1 (T1) which refers to experimental testing of basic science research findings in human subjects; and Type 2 (T2) which is the process of taking the results of clinical research and changing clinical practice based on them.

translating research to practice


In 2001, the Institute of Medicine released “Crossing the Quality Chasm: a New Health System for the 21st Century.” One of the ten rules for redesigning the system refers to evidence-based clinical decision-making. The report brief explicitly states: “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”

Changing physicians’ behavior is rarely easy (although occasionally it can be), and many smart people have tried to study what works and what doesn’t. One study published in JAMA that focused on physician adherence to practice guidelines identified 7 categories of change barriers (2):

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Outside of medicine, many industries have explored the reasons behind failure of change management or failure of implementation and have made suggestions intended to facilitate change. While these recommendations make sense, they are often easier said than done. In health care, there is a great deal of “dogma-logy” (the non-scientific practice of doing what you’ve been told to do based on no available evidence) that must be overcome. Implementation researchers suggest “incremental, context-sensitive, evidence-based management strategies for change implementation” and the need for local champions within front line staff (e.g., nurses and unit managers) to drive change (3). This is consistent with lean management. This still may not be enough, especially if the proposed change is perceived as being overly complex or just more work (4).

The evolution of modern communication may help overcome some of the perceived barriers (2). Use of social media, Twitter in particular, may be a powerful tool to rapidly disseminate new knowledge. It can be used to share new journal articles as they are published or exciting research results even before they are published. Physicians can follow their professional societies and scientific journals, but also follow thought leaders, business schools, and economic journals that post on organizational culture and change management. In the era of Twitter chats and “live-tweeting” medical conferences, lack of awareness (#1) or familiarity (#2) is no longer an acceptable excuse.

In addition, social media networks may also provide moral support (#4) through global conversations, and colleagues may provide real-life examples of successful implementation strategies (#5) that may help generate enough motivation to drive change (#6). However, sometimes inertia may be easy to overcome. According to Dr. Audrey Shafer, Stanford Professor and physician anesthesiologist, “There should be some acknowledgement of the complexity-to-benefit ratio. If complexity of the change is low, and the benefit high, then I believe the behavioral change is swifter. The prime example in my lifetime is the use of pulse oximetry. It may have been a long time from the concept of pulse oximetry until the first viable commercially available oximeter was available in clinical practice, but after an anesthesiologist used it once, he/she did not want to do another case without one.”

That still leaves lack of agreement (#3) and external barriers (#7). Even if you don’t agree with the scientific evidence, at least be open to observe. I really like the design thinking approach as described by Ideo and others and think it has a place in health care change implementation. You can download the free toolkit for educators here. I tweeted Ideo’s figure of the design process with its 5 phases recently and got a great response.

Tweet design

This approach makes a lot of sense in medicine. It has many similarities to the way we approach patient care: observe a diagnostic dilemma, order tests and interpret them, consider the differential diagnosis, attempt a treatment, and adjust treatment based on the observed outcome.

To overcome external barriers to change in health care, senior leaders must be engaged and actively participate in improvement efforts (5). I strongly encourage physicians to step up and take on some of these leadership roles. Sometimes saying “yes” to something that seems relatively small will lead to bigger opportunities down the road. By becoming leaders, physicians can be the ones to drive the change that they want to see in clinical practice.

REFERENCES:

  1. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011 Dec;104(12):510-20.
  2. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PA, Rubin HR. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999 Oct 20;282(15):1458-65.
  3. Rangachari P, Rissing P, Rethemeyer K. Awareness of evidence-based practices alone does not translate to implementation: insights from implementation research. Qual Manag Health Care. 2013 Apr-Jun;22(2):117-25.
  4. Grol R. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care. 2001 Aug;39(8 Suppl 2):II46-54.
  5. Pronovost PJ, Berenholtz SM, Goeschel CA, Needham DM, Sexton JB, Thompson DA, Lubomski LH, Marsteller JA, Makary MA, Hunt E. Creating high reliability in health care organizations. Health Serv Res. 2006 Aug;41(4 Pt 2):1599-617.

Related Posts: