Category Archives: Medical Education

Tips for Live Tweeting a Meeting

Live tweeting during a scientific conference offers many benefits. For attendees at the meeting, it allows sharing of learning points from multiple concurrent sessions. This also decreases the incidence of “FOMO (Fear of Missing Out)” since you can only be in one session at any given time but can learn vicariously through others. For your Twitter community outside the meeting venue, your live tweeting can help to disseminate the key messages from the conference to a broader audience and ultimately may facilitate changes in clinical practice.

Check out these “Ten Simple Rules for Live Tweeting at Scientific Conferences” and Marie Ennis-O’Connor’s “15 Tips for Live Tweeting an Event” for a comprehensive overview of this subject.

Here are a couple of my own general rules to tweet by:

  1. Register your scientific conference hashtag on Symplur. This gives you access to free analytics and transcript services for a limited time.
  2. Be sure to use the correct conference hashtag and include it in all your tweets related to the conference. This is probably included in your conference materials or emails from the organizer. The hashtag allows others to easily find your tweets related to the conference and include your tweets in transcript summaries after the conference is over.
  3. Go for quality and not quantity. It is too difficult (and unnecessary) to give a phrase-by-phrase reproduction of a speaker’s entire lecture. Remember that you are primarily in attendance to learn, so make sure you spend most of your time listening and not tweeting. Consider summarizing two or three salient points into one tweet or tweeting photos of slides with a short commentary to provide context to your Twitter community.
  4. Give credit where credit is due. Do a little homework before tweeting. If a speaker has a Twitter handle, include it in your tweet. If the speaker references a relevant article, find the link and include it in your tweet. These elements make your tweet more informative to the reader and may increase the likelihood of its being retweeted or generating further conversation on Twitter.
  5. Don’t say anything in a tweet that you wouldn’t say to someone in public. Healthy debate is one of the best parts of scientific conferences, but keep the discussion on Twitter clean and professional and of course protect patient privacy and confidentiality.

Related Posts:

A New Era for Regional Anesthesiology and Acute Pain Medicine

It has finally happened–the inaugural class of ACGME-accredited Regional Anesthesiology and Acute Pain Medicine (RAAPM) fellowships has been announced, marking the beginning of a new era.

Congratulations to the following 9 programs that now are the first accredited fellowship programs representing this subspecialty in the United States:

  1. Stanford University
  2. Cedars-Sinai Medical Center
  3. University of California, San Francisco
  4. Massachusetts General Hospital
  5. Brigham and Women’s Hospital
  6. Montefiore Medical Center/Albert Einstein College of Medicine
  7. Icahn School of Medicine at Mount Sinai/St. Luke’s-Roosevelt Hospital
  8. Duke University Hospital
  9. Vanderbilt University Medical Center

Accreditation is immediate and retroactive to the current 2016-17 academic year. This announcement represents a tremendous achievement in anesthesiology training and medical education in general.  Nearly 4 years ago, at our spring RAAPM fellowship directors meeting in 2013, I was appointed to lead the task force that would eventually make contact with the ACGME to request consideration for accreditation of our subspecialty fellowship programs. After submitting the 161-page letter to ACGME, we waited nearly a year to receive a response, and it was positive. The next 2 years were spent drafting the program requirements that would eventually be used as the basis for fellowship design and evaluation. This was an iterative process with multiple revisions based on solicited feedback and public commentary.

When the application period opened for the first time ever in October 2016, programs interested in applying had less than 2 months to prepare their program information forms and other materials, have them reviewed and approved by their local graduate medical education offices, and submit to ACGME in time for the 2017 spring review.

These 9 accredited programs have embarked on a brave new path, but it will not be an easy one. Their programs will be reviewed periodically to evaluate adherence to the program requirements and the quality of fellowship training, and deficiencies identified will need to be resolved or face loss of accreditation. However, their commitment to maintaining accreditation represents, in my opinion, a commitment to their fellows that they will provide a training experience that can be held as a benchmark for all programs.

We need our fellowship training programs to develop leaders in regional anesthesiology and acute pain medicine who can catalyze changes in healthcare that will improve patient outcomes and experience. Today, we have taken a huge step forward.

Related Posts:

The “Top 10” Regional Anesthesia Articles of 2016

I was recently asked to provide a list of my “Top 10” regional anesthesia research articles from 2016 and not to include my own. So for what it’s worth (not much!), I’m sharing them below in no particular order.

In my humble opinion, these articles from 2016 have already influenced my clinical practice, taught me to look at something differently, or made me think of a new research question.

Trends in the Use of Regional Anesthesia: Neuraxial and Peripheral Nerve Blocks. Reg Anesth Pain Med. 2016 Jan-Feb;41(1):43-9. doi: 10.1097/AAP.0000000000000342.

The Second American Society of Regional Anesthesia and Pain Medicine Evidence-Based Medicine Assessment of Ultrasound-Guided Regional Anesthesia: Executive Summary. Reg Anesth Pain Med. 2016 Mar-Apr;41(2):181-94. doi: 10.1097/AAP.0000000000000331.

Teaching ultrasound-guided regional anesthesia remotely: a feasibility study. Acta Anaesthesiol Scand. 2016 Aug;60(7):995-1002. doi: 10.1111/aas.12695.

Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016 Feb 21;2:CD009121. doi: 10.1002/14651858.CD009121.pub2.

Perineural versus intravenous dexamethasone as adjuncts to local anaesthetic brachial plexus block for shoulder surgery. Anaesthesia. 2016 Apr;71(4):380-8. doi: 10.1111/anae.13409.

Continuous Popliteal Sciatic Blocks: Does Varying Perineural Catheter Location Relative to the Sciatic Bifurcation Influence Block Effects? A Dual-Center, Randomized, Subject-Masked, Controlled Clinical Trial. Anesth Analg. 2016 May;122(5):1689-95. doi: 10.1213/ANE.0000000000001211.

A randomised controlled trial comparing meat-based with human cadaveric models for teaching ultrasound-guided regional anaesthesia. Anaesthesia. 2016 Aug;71(8):921-9. doi: 10.1111/anae.13446.

Adductor Canal Block Provides Noninferior Analgesia and Superior Quadriceps Strength Compared with Femoral Nerve Block in Anterior Cruciate Ligament Reconstruction. Anesthesiology. 2016 May;124(5):1053-64. doi: 10.1097/ALN.0000000000001045.

A radiologic and anatomic assessment of injectate spread following transmuscular quadratus lumborum block in cadavers. Anaesthesia. 2017 Jan;72(1):73-79. doi: 10.1111/anae.13647.

Regional Nerve Blocks Improve Pain and Functional Outcomes in Hip Fracture: A Randomized Controlled Trial. J Am Geriatr Soc. 2016 Dec;64(12):2433-2439. doi: 10.1111/jgs.14386.

Related Posts:

Changing Clinical Practice Doesn’t Have to Take So Long

Guest post by Seshadri Mudumbai, MD, MS.  Dr. Mudumbai is an Assistant Professor of Anesthesiology, Perioperative and Pain Medicine at Stanford University School of Medicine. He is also a health services researcher and physician anesthesiologist at the Veterans Affairs Palo Alto Health Care System.

time-for-changeChanging physician behavior is rarely easy, and studies show that it can take an average of 17 years before research evidence becomes widely adopted in clinical practice. One study published in JAMA has identified 7 categories of change barriers:

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Why Change?

According to the Institute of Medicine’s Crossing the Quality Chasm: a New Health System for the 21st Century:  “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”  Our group has focused our efforts on implementing updated evidence-based medicine initiatives for surgical patients with a special emphasis on the total knee replacement population.  Knee replacement is already one of the most common types of surgery in the United States (over 700,000 procedures per year).  Given an aging population, the volume of knee replacement surgeries is expected to increase to over 3 million by the year 2030.

We now have sufficient evidence to support “neuraxial anesthesia” (such as a spinal or epidural) as the preferred intraoperative anesthetic technique for knee replacement patients.  With neuraxial anesthesia, an injection in the back temporarily numbs the legs and allows for painless surgery of the knee.  Several studies have now shown better outcomes and fewer complications after knee replacement surgery with neuraxial anesthesia when compared with general anesthesia.  Despite these known benefits, a large study evaluating data from approximately 200,000 knee replacement patients across the United States reveals that use of neuraxial anesthesia occurs in less than 30% of cases.  At our facility prior to changing our practice, we noted a 13% rate of neuraxial anesthesia utilization.  In the face of growing evidence, we chose to change our practice, and the results of these efforts are reported in our recently published article.

How Did We Start?

An important tool used to coordinate the perioperative care of knee replacement patients has long been the clinical pathway.  A clinical pathway is a detailed care plan for the period before, during, and after surgery that covers multiple disciplines:  surgery, anesthesiology and pain management, nursing, physical and occupational therapy, and sometimes more.   The concept of the clinical pathway should be dynamic and not static.  This requires a process to ensure clinical pathways are periodically updated and someone to take a leadership role in managing the process.

At our institution, we established a coordinated care model known as the Perioperative Surgical Home (PSH).  The PSH provides the overall structure and coordination for perioperative care, and multiple clinical pathways exist within this structure.  With a PSH, physician anesthesiologists are charged with providing leadership and oversight of specific clinical pathways, collecting and reviewing data, engaging frontline healthcare staff and managers across disciplines, and suggesting changes or updates to clinical pathways as new evidence emerges.

Within our PSH model, we invested in a 5 month process to change our preferred anesthetic technique from general anesthesia to neuraxial anesthesia within the clinical pathway for knee replacement patients.  This process involved many steps and followed the Consolidated Framework for Implementation Research:

  1. Literature review and interdepartmental presentation
  2. Development of a work document
  3. Training of staff
  4. Prospective collection of data with feedback to staff.

After one year, the overall percentage of knee replacement patients receiving neuraxial anesthesia increased to 63% from 13%, and a statistically-significant increase in neuraxial anesthesia use took place within one month of the updated clinical pathway rollout.

How Do We Keep It Going?

Neuraxial anesthesia continues to be the predominant anesthetic technique that our knee replacement patients receive today.  We attribute the ongoing success of this change to multidisciplinary collaboration, physician leadership in the form of a departmental champion, peer support and feedback, frequent open communication, and engagement and support from facility leadership.  The results of our study and experience show that a PSH may help facilitate changes in clinical practice quicker than other less-coordinated models of care.  As PSH models continue to be developed, further evidence to support the impact of clinical practice changes on patient-oriented outcomes related to quality and safety and healthcare economics is needed.

For patient education materials regarding anesthetic options for knee replacement surgery, please visit My Knee Guide.

 

 

Related Posts:

Reality and the Ivory Tower

At our conferences and workshops focused on regional anesthesiology and acute pain medicine, we present and discuss the latest and greatest advances in nerve block techniques for patients having surgery.  As physicians and scientists, we are very familiar with the evidence supporting the use of nerve blocks for postoperative pain management.  We know they are extremely effective in preventing and treating pain, decreasing the need for opioid medications, and even avoiding the common side effects of general anesthesia such as nausea and vomiting and confusion.

ASRA 2015

We believe in them.  

We are passionate about them.  

We want all patients to have access to them.

Within the meeting sessions and sometimes in the common spaces outside the lecture halls, regional anesthesiologists often vigorously debate various things like:  the best sites and techniques for nerve block injections, needle and catheter equipment, ultrasound transducers and machines, and local anesthetic selection and use of adjuvants among other things.  

For knee replacement patients in particular, we want to provide the best form of pain management while maximizing their postoperative function.  Since 2011, dozens of research articles have studied the more distal adductor canal block for pain management in patients who undergo knee replacement as a replacement for the long-standing incumbent, the femoral nerve block.  In reality, these sites of nerve block placement are mere centimeters apart and represent different sites of injection along the same set of nerves.  Anesthesiologists and surgeons continue to debate this issue in person, in social media, and in publications.

It’s time for a reality check.

I had the opportunity to do a big data study with my friend and colleague, Dr. Stavros Memtsoudis.  In this study of over 191,000 knee replacement patients who had surgery across over 400 hospitals in the United States, only 12.1% of all patients had a peripheral nerve block of any kind!  Over 76% of patients had general anesthesia alone with no other regional analgesic technique. 

A more recent study published this month in the Journal of Arthroplasty evaluated over 219,000 patients who underwent knee replacement, and only 27.3% of patients received a peripheral nerve block.  The database used for this study was NACOR, operated by the Anesthesia Quality Institute and the American Society of Anesthesiologists.  This was brought to my attention through a Tweet sent by My Knee Guide (@mykneeguide).

Screenshot_20160817-203011

Where is the disconnect?  The efficacy of peripheral nerve blocks for pain control in patients having knee arthroplasty was first published more than 25 years ago.  It is easy to assume that such well-established evidence is being applied daily in clinical practice for the hundreds of thousands of patients who receive this surgery every year, but it’s not.  Today, there is more awareness than ever about the risks of opioids, and nerve blocks offer proven opioid-sparing pain relief.  Perhaps this is just another example of the gap separating the “ivory tower” of academics and real life.

In a previous post, I wrote about the obstacles to changing clinical practice, and there are many:

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Maybe it’s time to focus less on debating minor differences in the ways we do blocks and focus more on figuring out how to make sure more patients actually get them.  

Related Posts:

Tips for Reading a Clinical Research Article

paper stackIt is getting more and more difficult to keep up with newly published articles even just in one medical subspecialty.  With so much to read, from background articles for research papers to articles for journal club to manuscript assignments as a peer reviewer, it is important to be efficient and attack every scientific article or manuscript strategically.

Clinical research is my focus area, but the following updated tips for interpreting a journal article may apply to other areas of research as well.

Background:  Do the authors summarize previously published studies leading up to the present study?  What don’t we already know about this topic?

  1. Do the authors do a good job justifying the reason for the study?  This should not be lengthy if there is clearly a need for the study.
  2. Do the authors present a hypothesis?  What is it?
  3. What is the primary aim/objective of the study?  Do the authors specific secondary aims/objectives?

Study Design:  Do the authors explicitly state the design used in the present study?  If so, what is it?

Retrospective (“case-control study”):  Starts with the outcome then looks back in time for exposure to risk factors or interventions

  1. Can calculate odds ratios to estimate relative risk.
  2. Cannot calculate risk/incidence (not prospective).

Cross-sectional (“prevalence study”):  Takes a snapshot of risk factors and outcome of interest at one point in time or over a specific period of time

  1. Can calculate prevalence.
  2. Cannot calculate risk/incidence (not longitudinal).

Prospective:  Gold standard for clinical research–may be observational or interventional/experimental.  Check if the study is prospectively registered (e.g., clinicaltrials.gov) because most journals expect this.

Observational (“cohort study”)

  1. May or may not have a designated control group (can start with defined group and risk factors are discovered over time such as the Framingham Study).
  2. Can calculate incidence and relative risk for certain risk factors.
  3. Identify causal associations.

Interventional/Experimental (“clinical trial”)

  1. What is the intervention or experiment?
  2. Is there blinding?  If so, who is blinded:  single, double, or triple (statistician blinded)?
  3. Are the groups randomized?  How is this performed?
  4. Is there a sample size estimate and what is it based on (alpha and beta error, population mean and SD, expected effect size)?  This should be centered around the primary outcome.
  5. What are the study groups?  Are the groups independent or related?
  6. Is there a control group such as a placebo (for efficacy studies) or active comparator (standard of care)?

Measurements:  How are the outcome variables operationalized?  Check the validity, precision, and accuracy of the measurement tools (e.g., survey or measurement scale).

  1. Validity:  Has the tool been used before?  Is it reliable?  Does the tool make sense (face validity)?  Is the tool designed to measure the outcome of interest (construct validity)?
  2. Precision:  Does the tool hit the target?
  3. Accuracy:  Are the results reproducible?

Analysis:  What statistical tests are used and are they appropriate?  How do the authors define statistical significance (p-value or confidence intervals)?  How are the results presented in the paper and are they clear?

  1. Categorical variables with independent groups:  1 outcome and 2 groups = Chi square test (exact tests are used when n<5 in any field); multiple outcomes or multiple groups = Kruskal Wallis (with one-way ANOVA and post-hoc multiple comparisons test (e.g., Tukey-Kramer).
  2. Continuous variables with independent groups:  1 outcome and 2 groups = Student’s t test (if normal distribution) or Mann-Whitney U test (if distribution not normal); multiple outcomes or multiple groups = ANOVA with post-hoc multiple comparisons testing; multiple outcomes and multiple groups = linear regression.
  3. Continuous variables with related groups:  paired t test or repeated-measures ANOVA depending on the number of outcomes and groups.
  4. Are the results statistically significant?  Clinically significant?
  5. Do the results make sense?

Conclusions:  I personally tend to skip the discussion section of the paper at first and come up with my own conclusions based on the study results; then I read what the authors have to say later.

  1. Did the authors succeed in proving what they set out to prove?
  2. Read the discussion section.  Do you agree with the authors’ conclusions?
  3. What are possible future studies based on the results of the present study and how would you design the next study?

Related Posts:

The Future of Acute Pain Medicine Training

AVC.Pain_We all know that not all pain is the same. While chronic pain can sometimes be palliated, “acute” pain (new onset, often with an identifiable cause) must be aggressively managed and, ideally, eliminated. This requires a systems-based approach led by physicians dedicated to understanding acute pain pathophysiology and investigating new ways to treat it. 

In December 2013, I submitted a 161-page letter to the Accreditation Council for Graduate Medical Education (ACGME) requesting that regional anesthesiology and acute pain medicine be considered for fellowship accreditation, with a lot of help from a small group of fellowship directors and colleagues from obstetric anesthesiology who recently went through the ACGME accreditation process for their fellowships. With no requests for further information, the Board of Directors of the ACGME informed me in the fall of 2014 that Regional Anesthesiology and Acute Pain Medicine (RAAPM) will be the next accredited subspecialty fellowship within the core discipline of Anesthesiology.  The draft program requirements have been posted online for public comments.  After the comment period, these program requirements will be revised and then finalized for posting by the ACGME. At that point, which may be as early as the end of this year, institutions with RAAPM fellowships will be invited to apply for accreditation.

I have received many questions from ASRA members about this process to date, so below I have provided some of my answers to the most common ones:

Why do we need “another” fellowship dedicated to pain medicine?  Although we already have a board-certified subspecialty of Pain Medicine within Anesthesiology, there is a growing demand for physicians who specialize in hospital-based acute pain medicine. For Pain Medicine fellows, the required “Acute Pain Inpatient Experience” may be satisfied by documented involvement with a minimum of only 50 new patients and the spectrum of pain diagnoses and treatments that they are required to learn during one year is vast. Further, Pain Medicine is a board-certified subspecialty of Emergency Medicine, Family Medicine, Physical Medicine and Rehabilitation, and Psychiatry and Neurology, in addition to Anesthesiology; graduates from any of these residency programs can be accepted into the one-year Pain Medicine fellowship and will not be as familiar with surgical or trauma-induced acute pain as an anesthesiology residency graduate. Anesthesiology is a hospital-based medical specialty, and anesthesiologists are physicians who focus on a  daily basis on the prevention and treatment of pain for their patients who undergo surgery, suffer trauma, or present for childbirth. History also supports the evolution of acute pain medicine through anesthesiology. The concept of an anesthesiology-led acute pain management service was described first in 1988 (1), but arguably the techniques employed in modern acute pain medicine and regional anesthesiology date back to Gaston Labat’s publication of Regional Anesthesia: Its Technic and Clinical Application in 1922, with advancement and refinement of this subspecialty in the 1960s and 1970s (2-6). Finally, a recent survey study shows that the great majority (83.7%) of practicing pain physicians in the United States focus only on chronic pain (7).

Why do anesthesiology residency graduates still need to do a fellowship in RAAPM? By the time they complete the core residency in anesthesiology today, not all residents have gained sufficient clinical experience to provide optimal care for the complete spectrum of issues experienced by patients suffering from acutely painful conditions, including the ability to reliably provide advanced interventional techniques proven to be effective in managing pain in the acute setting (8-12). We need physician leaders who can run acute pain medicine teams and design systems to provide individualized, comprehensive, and timely pain management for both medical and surgical patients in the hospital, expeditiously managing requests for assistance when pain intensity levels exceed those set forth in quality standards, or to prevent pain intensity from reaching such levels. The mission statement for the Acute Pain Medicine Special Interest Group within the American Academy of Pain Medicine provides clear justification.

Will RAAPM fellowship graduates get jobs when they are done? Although no one can make this guarantee, there are good reasons to think that there will be growing demand for RAAPM graduates in the future. In a survey of fellowship graduates and academic chairs published in 2005, 61 of 132 of academic chairs responded (46%), noting that future staffing models for their department will likely include an average of two additional faculty trained in regional anesthesiology and acute pain medicine (13). RAAPM fellowship graduates are the only physicians who can say that their subspecialty training is entirely dedicated to improving the patient experience. The Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey is administered to a random sample of patients who have received inpatient care and receive government insurance through Center for Medicare and Medicaid Services (CMS). The survey consists of 32 questions and is intended to assess the “patient experience of care” domain in the value-based purchasing program. A hospital’s survey scores are publicly disclosed and make up 30% of the formula used to determine how much of its diagnosis-related group payment withholding will be paid by CMS at the end of each year. Of the 32 questions, 7 directly or indirectly relate to in-hospital pain management.

Are we ready for accreditation? Currently, there are over 60 institutions in the United States and Canada that list themselves as having nonaccredited fellowship training programs focused on RAAPM on the ASRA website. Since 2002, the group of regional anesthesiology and acute pain medicine fellowship directors has been meeting twice yearly at the ASRA Annual Spring Meeting and the American Society of Anesthesiologists (ASA) Annual Meeting in the fall. Despite not being an ACGME-accredited fellowship, this group, has been voluntarily engaged in developing and refining training guidelines as the foundation for the fellowship. These guidelines, originally published in Regional Anesthesia and Pain Medicine in 2005 (14) with a revision in 2011 (15) have been recently released as the third edition (16). Formal ACGME program requirements will serve as a measuring stick to hopefully ensure that the certificates that RAAPM fellowship graduates receive from all accredited programs will share some common value.

As with other medical subspecialties, acute pain medicine has emerged due to the need for trained specialists—in this case, those who possess the knowledge, skills, and abilities to efficiently manage a high volume of inpatient consultations, anticipate the analgesic needs of a wide range of patients based on preoperative risk, use a multimodal approach to manage and prevent pain when possible, and aggressively treat severe acute pain when it occurs to prevent it from transitioning into chronic pain. The RAAPM fellowship graduate must be a physician leader who is capable of collaborating with other healthcare providers in anesthesiology, surgery, medicine, nursing, pharmacy, physical therapy, and more to establish multidisciplinary programs that add value and improve patient care in the hospital setting and beyond.

This article originally appeared in the February 2016 issue of ASRA News.  As of October 2016, the regional anesthesiology and acute pain medicine is the newest accredited subspecialty fellowship within anesthesiology, and programs may now apply for accreditation to the ACGME.

REFERENCES

  1. Ready LB, Oden R, Chadwick HS, Benedetti C, Rooke GA, Caplan R, Wild LM. Development of an anesthesiology-based postoperative pain management service. Anesthesiology. 1988; 68:100-6.
  2. Winnie AP, Ramamurthy S, Durrani Z. The inguinal paravascular technic of lumbar plexus anesthesia: the “3-in-1 block.” Anesth Analg. 1973; 52:989-96.
  3. Winnie AP, Collins VJ. The subclavian perivascular technique of brachial plexus anesthesia. Anesthesiology. 1964; 25:353-63.
  4. Raj PP, Montgomery SJ, Nettles D, Jenkins MT Infraclavicular brachial plexus block–a new approach. Anesth Analg. 1973; 52:897-904.
  5. Raj PP, Parks RI, Watson TD, Jenkins MT. A new single-position supine approach to sciatic-femoral nerve block. Anesth Analg. 1975; 54:489-93.
  6. Raj PP, Rosenblatt R, Miller J, Katz RL, Carden E. Dynamics of local-anesthetic compounds in regional anesthesia. Anesth Analg 1977; 56: 110-7.
  7. Breuer B, Pappagallo M, Tai JY, Portenoy RK. U.S. board-certified pain physician practices: uniformity and census data of their locations. J Pain. 2007; 8: 244-50.
  8. Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol. 2009; 22: 588-93.
  9. Hebl JR, Dilger JA, Byer DE, Kopp SL, Stevens SR, Pagnano MW, Hanssen AD, Horlocker TT. A pre-emptive multimodal pathway featuring peripheral nerve block improves perioperative outcomes after major orthopedic surgery. Reg Anesth Pain Med. 2008; 33: 510-7.
  10. Jin F, Chung F. Multimodal analgesia for postoperative pain control. J Clin Anesth. 2001; 13: 524-39.
  11. Kehlet H, Dahl JB. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg. 1993; 77: 1048-56.
  12. Young A, Buvanendran A.Recent advances in multimodal analgesia. Anesthesiol Clin. 2012; 30: 91-100.
  13. Neal JM, Kopacz DJ, Liguori GA, Beckman JD, Hargett MJ. The training and careers of regional anesthesia fellows–1983-2002. Reg Anesth Pain Med. 2005; 30: 226-32.
  14. Hargett MJ, Beckman JD, Liguori GA, Neal JM. Guidelines for regional anesthesia fellowship training. Reg Anesth Pain Med. 2005; 30: 218-25.
  15. Regional Anesthesiology and Acute Pain Medicine Fellowship Directors Group. Guidelines for fellowship training in regional anesthesiology and acute pain medicine: second edition, 2010. Reg Anesth Pain Med. 2011; 36: 282-8.
  16. Regional Anesthesiology and Acute Pain Medicine Fellowship Directors Group. Guidelines for fellowship training in regional anesthesiology and acute pain medicine: third edition, 2014. Reg Anesth Pain Med. 2015; 40: 213-7.

Related Posts:

To the Next Generation of Physician Leaders

I was recently invited to visit an academic anesthesiology department to speak to the residents about becoming a leader (see SlideShare). In addition to recognizing the honor and privilege of addressing this important topic with the next generation of physician anesthesiologists, I had two other initial thoughts: 1) I must be getting old; and 2) This isn’t going to be easy.

Balloon FiestaI came up with a short list of lessons that I’ve learned over the years. While some examples I included are anesthesiology-specific, the lessons themselves are not. Please feel free to edit, adapt, and add to this list; then disseminate it to the future physician leaders who will one day take our places.

  1. First and foremost, be a good doctor. Always remember that we as physicians take an oath. In the modern version of the Hippocratic Oath commonly recited at medical school graduations today, we say, “May I always act so as to preserve the finest traditions of my calling and may I long experience the joy of healing those who seek my help.” As a physician anesthesiologist, we care for the most vulnerable of patients—those who under anesthesia cannot care for themselves. Examples of anesthesiologists who do not honor their calling exist in the news and even scientific journals, but we cannot follow this path. 

     

  2. Define your identity. We live in the era of the “provider,” and this sometimes causes role confusion from the perspective of our patients. Team PhotoWe also don’t tend to do ourselves any favors. How many times have you heard someone say, “Hi I’m [first name only] with anesthesia”? According to the American Society of Anesthesiologists newsletter, approximately 60% of the public may not know that physician anesthesiologists go to medical school. While every member of the anesthesia care team plays a crucial role, the next level of non-physician provider in this model has one-tenth the amount of clinical training when compared to a physician anesthesiologist at graduation. I’ve written before about what I love about being an anesthesiologist, and being the physician whom patients trust to keep them safe during surgery is a privilege which comes with a great deal of responsibility.
  3. Consider the “big picture.” The health care enterprise is constantly evolving. Today, the emphasis is on value and not volume. Value takes into account quality and cost with the highest quality care at the lowest cost being the ultimate goal. The private practice model of anesthesiology has changed dramatically in the last few years with the growth of “mega-groups” created by vertical and horizontal integration of smaller practices and sometimes purchased by private investors. In this environment, physician anesthesiologists and anesthesiology groups will have to consider ways they can add value, improve the patient experience, and reduce costs of care in order to stay relevant and competitive.
  4. Promote positive change. Observe, ask questions, hypothesize solutions, collect data, evaluate results, draw conclusions, and form new hypotheses—these are all elements of the scientific method and clinical medicine. These steps are also common to process improvement, making physicians perfectly capable of system redesign. The key is establishing your team’s mission and vision, strategic planning and goal-setting, and regularly evaluating progress. Books have been written on these subjects, so I can’t do these topics justice here. In my opinion, physicians offer an important and necessary perspective that cannot be lost as healthcare becomes more and more business-like.
  5. Be open to opportunities. Thomas Edison said, “Opportunity is missed by most people because it is dressed in overalls and looks like work.” I have written previously about the merits of saying yes. As a resident or new staff physician, it often seems impossible to get involved. However, most hospital committee meetings are open to guests. Consider going to one that covers a topic of interest and volunteer for a task if the opportunity presents itself. In addition, many professional societies invite members to self-nominate for committees or submit proposals for educational activities at their annual meetings.
  6. IMG_7673Thank your team. Taking the first steps on the path to leadership is not going to be easy. There will be many obstacles, not the least of which is time management. A high-functioning healthcare team of diverse backgrounds, skills, and abilities will accomplish much more than what an individual can do alone. Celebrate team wins. Respect each team member’s opinion even when it differs from yours.

A good leader should earn the trust of his or her team every day.

Related Posts:

Changing Clinical Practice Shouldn’t Take So Long

An interesting article I read recently confirmed previous studies’ estimation that it takes an average of 17 years before research evidence becomes widely adopted in clinical practice (1)–17 years!

In this article, Morris and colleagues differentiate “translational research” into two types: Type 1 (T1) which refers to experimental testing of basic science research findings in human subjects; and Type 2 (T2) which is the process of taking the results of clinical research and changing clinical practice based on them.

translating research to practice


In 2001, the Institute of Medicine released “Crossing the Quality Chasm: a New Health System for the 21st Century.” One of the ten rules for redesigning the system refers to evidence-based clinical decision-making. The report brief explicitly states: “Patients should receive care based on the best available scientific knowledge. Care should not vary illogically from clinician to clinician or from place to place.”

Changing physicians’ behavior is rarely easy (although occasionally it can be), and many smart people have tried to study what works and what doesn’t. One study published in JAMA that focused on physician adherence to practice guidelines identified 7 categories of change barriers (2):

  1. Lack of awareness (don’t know guidelines exist)
  2. Lack of familiarity (know guidelines exist but don’t know the details)
  3. Lack of agreement (don’t agree with recommendations)
  4. Lack of self-efficacy (don’t think they can do it)
  5. Lack of outcome expectancy (don’t think it will work)
  6. Inertia (don’t want to change)
  7. External barriers (want to change but blocked by system factors)

Outside of medicine, many industries have explored the reasons behind failure of change management or failure of implementation and have made suggestions intended to facilitate change. While these recommendations make sense, they are often easier said than done. In health care, there is a great deal of “dogma-logy” (the non-scientific practice of doing what you’ve been told to do based on no available evidence) that must be overcome. Implementation researchers suggest “incremental, context-sensitive, evidence-based management strategies for change implementation” and the need for local champions within front line staff (e.g., nurses and unit managers) to drive change (3). This is consistent with lean management. This still may not be enough, especially if the proposed change is perceived as being overly complex or just more work (4).

The evolution of modern communication may help overcome some of the perceived barriers (2). Use of social media, Twitter in particular, may be a powerful tool to rapidly disseminate new knowledge. It can be used to share new journal articles as they are published or exciting research results even before they are published. Physicians can follow their professional societies and scientific journals, but also follow thought leaders, business schools, and economic journals that post on organizational culture and change management. In the era of Twitter chats and “live-tweeting” medical conferences, lack of awareness (#1) or familiarity (#2) is no longer an acceptable excuse.

In addition, social media networks may also provide moral support (#4) through global conversations, and colleagues may provide real-life examples of successful implementation strategies (#5) that may help generate enough motivation to drive change (#6). However, sometimes inertia may be easy to overcome. According to Dr. Audrey Shafer, Stanford Professor and physician anesthesiologist, “There should be some acknowledgement of the complexity-to-benefit ratio. If complexity of the change is low, and the benefit high, then I believe the behavioral change is swifter. The prime example in my lifetime is the use of pulse oximetry. It may have been a long time from the concept of pulse oximetry until the first viable commercially available oximeter was available in clinical practice, but after an anesthesiologist used it once, he/she did not want to do another case without one.”

That still leaves lack of agreement (#3) and external barriers (#7). Even if you don’t agree with the scientific evidence, at least be open to observe. I really like the design thinking approach as described by Ideo and others and think it has a place in health care change implementation. You can download the free toolkit for educators here. I tweeted Ideo’s figure of the design process with its 5 phases recently and got a great response.

Tweet design

This approach makes a lot of sense in medicine. It has many similarities to the way we approach patient care: observe a diagnostic dilemma, order tests and interpret them, consider the differential diagnosis, attempt a treatment, and adjust treatment based on the observed outcome.

To overcome external barriers to change in health care, senior leaders must be engaged and actively participate in improvement efforts (5). I strongly encourage physicians to step up and take on some of these leadership roles. Sometimes saying “yes” to something that seems relatively small will lead to bigger opportunities down the road. By becoming leaders, physicians can be the ones to drive the change that they want to see in clinical practice.

REFERENCES:

  1. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011 Dec;104(12):510-20.
  2. Cabana MD, Rand CS, Powe NR, Wu AW, Wilson MH, Abboud PA, Rubin HR. Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA. 1999 Oct 20;282(15):1458-65.
  3. Rangachari P, Rissing P, Rethemeyer K. Awareness of evidence-based practices alone does not translate to implementation: insights from implementation research. Qual Manag Health Care. 2013 Apr-Jun;22(2):117-25.
  4. Grol R. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care. 2001 Aug;39(8 Suppl 2):II46-54.
  5. Pronovost PJ, Berenholtz SM, Goeschel CA, Needham DM, Sexton JB, Thompson DA, Lubomski LH, Marsteller JA, Makary MA, Hunt E. Creating high reliability in health care organizations. Health Serv Res. 2006 Aug;41(4 Pt 2):1599-617.

Related Posts:

Why Doctors Should Be on Twitter

social-media-healthcareI am a physician, clinical researcher, and educator.

I am also on Twitter and tweet under the handle @EMARIANOMD.

Naturally you may ask:  “How does Twitter fit into a physician’s academic career?”  Some of the benefits that Twitter offers doctors have been described previously by Dr. Brian Secemsky and Dr. Marjorie Stiegler among others.  Here are a few reasons of my own:

  • Global Interaction:  Through Twitter I interact with people from around the world with similar interests.  Participating in Twitter chats like #healthxph or #hcldr can foster innovative ideas that may lead to research questions or other educational opportunities.  For example, by tweeting on #kneereplacement, I was invited by orthopedic surgeon, Dr. Brian Hatten, to revise the anesthesia information page on his site, My Knee Guide, an incredible online portal for people considering or undergoing knee replacement surgery.
  • Search Optimization:  On multiple occasions, I have found research articles that my traditional PubMed searches have missed through the tweets posted by colleagues.  I have even been able to relocate certain articles faster on Twitter than PubMed when I know they have been tweeted.  Researchers can think of hashtags (starting with “#”) essentially like keywords in the academic world.  I periodically check #anesthesia, #meded, #pain, and #kneereplacement for new articles related to my research interests.
  • Lifelong Learning:  When I was in training, I used to peruse the pages of JAMA and New England Journal of Medicine (NEJM) in addition to my own specialty’s journals.  Today, it’s difficult to even keep up with new articles just in my own subspecialty.  Now I follow JAMA and NEJM on Twitter.  By following journals, professional societies, and colleagues with similar interests, I honestly feel that my breadth of knowledge has increased beyond what I would have acquired on my own.
  • Research Promotion:  As a clinical researcher, my hope is that my study results will ultimately affect the care of patients.  Sadly, the majority of traditionally-published scientific articles will not be read by anyone besides the authors and reviewers.  Through Twitter, I can alert my followers when our research group publishes an article.  I also get feedback and “peer review” from colleagues around the world.  After a recent publication that I tweeted, I received comments from anesthesiologists in Canada and Europe within an hour!
  • Enriched Conference Experience:  A growing trend at medical conferences is “live-tweeting” the meeting.  One of my own issues when I attend or present at conferences is that I feel like I miss much of the meeting due to scheduling conflicts.  By living vicariously through my colleagues’ tweets at #ASRASpring15 for example, I can pick up pearls of wisdom from speakers in other sessions even while sitting in a different hall.  I can also “virtually” attend conferences by following tweets under the hashtags of meetings like #PCP15 in the Philippines  in the comfort of my own home.

I often get asked:  “Does anyone really care if I tweet what I eat for breakfast?”  Probably not.  The truth is that you don’t have to tweet anything at all if you don’t want to.   Up to 44% of Twitter accounts have never sent a tweet.   Of course, to be a physician actively engaged on Twitter requires respect for patient privacy and professionalism.  I recommend following Dr. John Mandrola’s 10 rules for doctors on social media.

In an interview during Stanford’s Big Data in Biomedicine Conference (video below), I had a chance to explain why I tweet.  I’ll admit that getting started is intimidating, but I encourage you to try it if you haven’t already.   I promise that you won’t regret it, and chances are that you’ll be very happy you did.  If you’re still too worried to take the leap, I suggest reading these tips from Marie Ennis-O’Connor to boost your confidence.  At least sign up, reserve your handle, and observe.

Observation is still a key part of the scientific method.

Related Posts: