Initiating an acute pain medicine program can add significant value to a hospital and anesthesiology practice through improved postoperative pain control, faster recovery, decreased side effects, and higher patient satisfaction. In a special issue of Anesthesiology News, I published an article which presents a few suggested strategies. You can view and download this article here.
In an accompanying video interview, I was asked about the evolution of ultrasound in regional anesthesia practice as well as the growing role of ultrasound in perioperative medicine.
As an anesthesiologist, I am a physician who cares for patients when they are most vulnerable. Under anesthesia, no one is able to call for help. Every day patients have surgery in operating rooms all over the world, and it is the job of the physician anesthesiologist to watch over them, monitor their bodies’ responses to stress, breathe for them, provide them with pain relief, and fight for them when unexpected crises occur. It is my job to calm the fears of my patients and families, listen to their requests, manage their expectations, and develop a plan that will provide them with the best outcome after surgery.
My belief in this connection between physicians, patients, and families as an anesthesiologist stretches into my administrative roles as well. As Chief of the Anesthesiology and Perioperative Care Service and Associate Chief of Staff for Inpatient Surgical Services at the VA Palo Alto Health Care System (VAPAHCS), I am grateful for the opportunity to work with an incredible team of physicians, respiratory therapists, surgeons, advanced practice providers, technicians, and administrative staff members who are focused on our mission to provide the highest quality Veteran-centered care by leading, educating, and innovating in anesthesiology and perioperative medicine.
In order to accomplish this mission, we need the best information available to guide our decisions and a diversity of perspectives to enhance our ability to train new clinicians and explore relevant research questions. We have been fortunate to partner with our friends and colleagues in the Veteran and Family Advisory Council (VFAC) on a number of exciting projects. First, our Service manages the simulation center at VAPAHCS and is responsible for coordinating simulation-based training for all clinicians. Members of VFAC have been directly involved in simulation activities, even taking on active roles as the patient or family member in standardized training scenarios, to help us educate clinicians from various disciplines and all training levels. Debriefing after these simulation exercises gives our clinical trainees and practicing clinicians the unique perspective of real patients and family members which is essential to their professional development as modern medicine continues to progress towards a model of patient-centered care.
Once a year, our Service organizes a faculty development retreat during which we reassess our mission, vision, strategic priorities, and tactics and work on one or two big ideas. Two years ago in 2015, we invited our VFAC partners to join us at our annual retreat to brainstorm improvement ideas related to patient-centered care in the perioperative environment, intensive care unit, and pain management. The general theme of the retreat addressed public perception and professional reputation of anesthesiologists and the specialty of anesthesiology. Having members of VFAC present at the retreat to share their knowledge, opinions, and questions has inspired a few subsequent improvement activities and other projects to enhance the range of services that we provide to our patients and their families.
Finally, working together with VFAC, and knowing members personally, has allowed our clinical Service to solicit feedback on a regular basis. Not all hospitals enjoy the level of access to a community of engaged patients and families like we do at VAPAHCS. When we revised our preoperative education materials for patients, we went to VFAC for input. When we were critically reviewing our website to update our online patient educational materials on anesthesia and perioperative care, we presented at the VFAC meeting to get the members’ feedback and suggestions. With their help, we have been able to improve the accessibility and readability of our online content and provide our patients and their families with useful information that can help prepare them for surgery.
We are very grateful to VFAC for its priceless contributions to our healthcare system, our patients, and our Service. We look forward to continued collaboration on future projects!
This blog has also appeared as a featured story on the VA Palo Alto Health Care System website.
I was recently invited to visit an academic anesthesiology department to speak to the residents about becoming a leader (see SlideShare). In addition to recognizing the honor and privilege of addressing this important topic with the next generation of physician anesthesiologists, I had two other initial thoughts: 1) I must be getting old; and 2) This isn’t going to be easy.
I came up with a short list of lessons that I’ve learned over the years. While some examples I included are anesthesiology-specific, the lessons themselves are not. Please feel free to edit, adapt, and add to this list; then disseminate it to the future physician leaders who will one day take our places.
First and foremost, be a good doctor. Always remember that we as physicians take an oath. In the modern version of the Hippocratic Oath commonly recited at medical school graduations today, we say, “May I always act so as to preserve the finest traditions of my calling and may I long experience the joy of healing those who seek my help.” As a physician anesthesiologist, we care for the most vulnerable of patients—those who under anesthesia cannot care for themselves. Examples of anesthesiologists who do not honor their calling exist in the news and even scientific journals, but we cannot follow this path.
Define your identity. We live in the era of the “provider,” and this sometimes causes role confusion from the perspective of our patients. We also don’t tend to do ourselves any favors. How many times have you heard someone say, “Hi I’m [first name only] with anesthesia”? According to the American Society of Anesthesiologists newsletter, approximately 60% of the public may not know that physician anesthesiologists go to medical school. While every member of the anesthesia care team plays a crucial role, the next level of non-physician provider in this model has one-tenth the amount of clinical training when compared to a physician anesthesiologist at graduation. I’ve written before about what I love about being an anesthesiologist, and being the physician whom patients trust to keep them safe during surgery is a privilege which comes with a great deal of responsibility.
Consider the “big picture.” The health care enterprise is constantly evolving. Today, the emphasis is on value and not volume. Value takes into account quality and cost with the highest quality care at the lowest cost being the ultimate goal. The private practice model of anesthesiology has changed dramatically in the last few years with the growth of “mega-groups” created by vertical and horizontal integration of smaller practices and sometimes purchased by private investors. In this environment, physician anesthesiologists and anesthesiology groups will have to consider ways they can add value, improve the patient experience, and reduce costs of care in order to stay relevant and competitive.
Promote positive change. Observe, ask questions, hypothesize solutions, collect data, evaluate results, draw conclusions, and form new hypotheses—these are all elements of the scientific method and clinical medicine. These steps are also common to process improvement, making physicians perfectly capable of system redesign. The key is establishing your team’s mission and vision, strategic planning and goal-setting, and regularly evaluating progress. Books have been written on these subjects, so I can’t do these topics justice here. In my opinion, physicians offer an important and necessary perspective that cannot be lost as healthcare becomes more and more business-like.
Be open to opportunities. Thomas Edison said, “Opportunity is missed by most people because it is dressed in overalls and looks like work.” I have written previously about the merits of saying yes. As a resident or new staff physician, it often seems impossible to get involved. However, most hospital committee meetings are open to guests. Consider going to one that covers a topic of interest and volunteer for a task if the opportunity presents itself. In addition, many professional societies invite members to self-nominate for committees or submit proposals for educational activities at their annual meetings.
Thank your team. Taking the first steps on the path to leadership is not going to be easy. There will be many obstacles, not the least of which is time management. A high-functioning healthcare team of diverse backgrounds, skills, and abilities will accomplish much more than what an individual can do alone. Celebrate team wins. Respect each team member’s opinion even when it differs from yours.
In this article, Morris and colleagues differentiate “translational research” into two types: Type 1 (T1) which refers to experimental testing of basic science research findings in human subjects; and Type 2 (T2) which is the process of taking the results of clinical research and changing clinical practice based on them.
Changing physicians’ behavior is rarely easy (although occasionally it can be), and many smart people have tried to study what works and what doesn’t. One study published in JAMA that focused on physician adherence to practice guidelines identified 7 categories of change barriers (2):
Lack of awareness(don’t know guidelines exist)
Lack of familiarity(know guidelines exist but don’t know the details)
Lack of agreement(don’t agree with recommendations)
Lack of self-efficacy(don’t think they can do it)
Lack of outcome expectancy(don’t think it will work)
Inertia(don’t want to change)
External barriers(want to change but blocked by system factors)
Outside of medicine, many industries have explored the reasons behind failure of change management or failure of implementation and have made suggestions intended to facilitate change. While these recommendations make sense, they are often easier said than done. In health care, there is a great deal of “dogma-logy” (the non-scientific practice of doing what you’ve been told to do based on no available evidence) that must be overcome. Implementation researchers suggest “incremental, context-sensitive, evidence-based management strategies for change implementation” and the need for local champions within front line staff (e.g., nurses and unit managers) to drive change (3). This is consistent with lean management. This still may not be enough, especially if the proposed change is perceived as being overly complex or just more work (4).
The evolution of modern communication may help overcome some of the perceived barriers (2). Use of social media, Twitter in particular, may be a powerful tool to rapidly disseminate new knowledge. It can be used to share new journal articles as they are published or exciting research results even before they are published. Physicians can follow their professional societies and scientific journals, but also follow thought leaders, business schools, and economic journals that post on organizational culture and change management. In the era of Twitter chats and “live-tweeting” medical conferences, lack of awareness (#1) or familiarity (#2) is no longer an acceptable excuse.
In addition, social media networks may also provide moral support (#4) through global conversations, and colleagues may provide real-life examples of successful implementation strategies (#5) that may help generate enough motivation to drive change (#6). However, sometimes inertia may be easy to overcome. According to Dr. Audrey Shafer, Stanford Professor and physician anesthesiologist, “There should be some acknowledgement of the complexity-to-benefit ratio. If complexity of the change is low, and the benefit high, then I believe the behavioral change is swifter. The prime example in my lifetime is the use of pulse oximetry. It may have been a long time from the concept of pulse oximetry until the first viable commercially available oximeter was available in clinical practice, but after an anesthesiologist used it once, he/she did not want to do another case without one.”
That still leaves lack of agreement (#3) and external barriers (#7). Even if you don’t agree with the scientific evidence, at least be open to observe. I really like the design thinking approach as described by Ideo and others and think it has a place in health care change implementation. You can download the free toolkit for educators here. I tweeted Ideo’s figure of the design process with its 5 phases recently and got a great response.
This approach makes a lot of sense in medicine. It has many similarities to the way we approach patient care: observe a diagnostic dilemma, order tests and interpret them, consider the differential diagnosis, attempt a treatment, and adjust treatment based on the observed outcome.
To overcome external barriers to change in health care, senior leaders must be engaged and actively participate in improvement efforts (5). I strongly encourage physicians to step up and take on some of these leadership roles. Sometimes saying “yes” to something that seems relatively small will lead to bigger opportunities down the road. By becoming leaders, physicians can be the ones to drive the change that they want to see in clinical practice.
Pronovost PJ, Berenholtz SM, Goeschel CA, Needham DM, Sexton JB, Thompson DA, Lubomski LH, Marsteller JA, Makary MA, Hunt E. Creating high reliability in health care organizations. Health Serv Res. 2006 Aug;41(4 Pt 2):1599-617.
I am a physician, clinical researcher, and educator.
I am also on Twitter and tweet under the handle @EMARIANOMD.
Naturally you may ask: “How does Twitter fit into a physician’s academic career?” Some of the benefits that Twitter offers doctors have been described previously by Dr. Brian Secemsky and Dr. Marjorie Stiegler among others. Here are a few reasons of my own:
Global Interaction: Through Twitter I interact with people from around the world with similar interests. Participating in Twitter chats like #healthxph or #hcldr can foster innovative ideas that may lead to research questions or other educational opportunities. For example, by tweeting on #kneereplacement, I was invited by orthopedic surgeon, Dr. Brian Hatten, to revise the anesthesia information page on his site, My Knee Guide, an incredible online portal for people considering or undergoing knee replacement surgery.
Search Optimization: On multiple occasions, I have found research articles that my traditional PubMed searches have missed through the tweets posted by colleagues. I have even been able to relocate certain articles faster on Twitter than PubMed when I know they have been tweeted. Researchers can think of hashtags (starting with “#”) essentially like keywords in the academic world. I periodically check #anesthesia, #meded, #pain, and #kneereplacement for new articles related to my research interests.
Lifelong Learning: When I was in training, I used to peruse the pages of JAMA and New England Journal of Medicine (NEJM) in addition to my own specialty’s journals. Today, it’s difficult to even keep up with new articles just in my own subspecialty. Now I follow JAMA and NEJM on Twitter. By following journals, professional societies, and colleagues with similar interests, I honestly feel that my breadth of knowledge has increased beyond what I would have acquired on my own.
Research Promotion: As a clinical researcher, my hope is that my study results will ultimately affect the care of patients. Sadly, the majority of traditionally-published scientific articles will not be read by anyone besides the authors and reviewers. Through Twitter, I can alert my followers when our research group publishes an article. I also get feedback and “peer review” from colleagues around the world. After a recent publication that I tweeted, I received comments from anesthesiologists in Canada and Europe within an hour!
Enriched Conference Experience: A growing trend at medical conferences is “live-tweeting” the meeting. One of my own issues when I attend or present at conferences is that I feel like I miss much of the meeting due to scheduling conflicts. By living vicariously through my colleagues’ tweets at #ASRASpring15 for example, I can pick up pearls of wisdom from speakers in other sessions even while sitting in a different hall. I can also “virtually” attend conferences by following tweets under the hashtags of meetings like #PCP15 in the Philippines in the comfort of my own home.
I often get asked: “Does anyone really care if I tweet what I eat for breakfast?” Probably not. The truth is that you don’t have to tweet anything at all if you don’t want to. Up to 44% of Twitter accounts have never sent a tweet. Of course, to be a physician actively engaged on Twitter requires respect for patient privacy and professionalism. I recommend following Dr. John Mandrola’s 10 rules for doctors on social media.
In an interview during Stanford’s Big Data in Biomedicine Conference (video below), I had a chance to explain why I tweet. I’ll admit that getting started is intimidating, but I encourage you to try it if you haven’t already. I promise that you won’t regret it, and chances are that you’ll be very happy you did. If you’re still too worried to take the leap, I suggest reading these tips from Marie Ennis-O’Connor to boost your confidence. At least sign up, reserve your handle, and observe.
Observation is still a key part of the scientific method.
Inscribed on a plaque just below a statue of an eagle in front of my hospital is a famous quote from President Abraham Lincoln that begins, “To care for him who shall have borne the battle….”
It is the reason why the Veterans Affairs (VA) system exists. It is the reason why we VA physicians come to work each day.
I am honored to care for our special patient population, and I admit to getting defensive when I hear negative, sensationalistic news about the VA. In truth, VA physicians have good reasons to take pride in their health care system and should be inspired to take on leadership roles.
In 1994, the VA was by far the largest networked health care system in the US. It consisted of 172 acute care hospitals, 350 hospital-based outpatient clinics, 206 counseling facilities, and 39 residential care facilities, with a budget of over $16 billion annually, and was “highly dysfunctional” according to an article co-authored by Kenneth W. Kizer, MD, MPH, the former Under Secretary of Health under President Clinton who headed the VA health care system from 1995-1999.
A decade later, the VA had turned around dramatically. When Philip Longman, a writer with a long interest in health policy, looked for potential solutions to the healthcare crisis in the United States, he found his “muse” within the VA—not in the private sector. He titled his 2007 book about the VA health care system: Best Care Anywhere: Why VA Health Care is Better Than Yours. What happened to make the VA go from worst to first?
In the mid-1990s, Dr. Kizer guided the VA to reset its focus on three core missions:
Providing medical care to eligible veterans to improve their health and functionality
Educating healthcare professionals
Conducting research to improve veteran care.
His strategies led to a dramatic transformation that took less than five years. VA health care showed a statistically-significant improvement in all quality of care indicators after the reengineering when compared to the same indicators before, and these improvements were evident within the first two years. By 2000, the VA outperformed Medicare hospitals on 12 of 13 quality of care indicators. A comprehensive study using RAND Quality Assessment Tools showed that VA adherence to recommended processes of care exceeded a comparable national sample. In terms of surgical care, the VA matched or outperformed non-VA programs in rates of morbidity and mortality.
Integral to this transformation was a remarkable nationwide rollout of an electronic health record in less than three years, with the last facility going live in 1999, long before most health care systems in the United States had even started. Other notable achievements during this period of reengineering included:
350,000 fewer inpatient admissions (FY 1999 vs. FY 1995) despite a 24% increase in patients treated overall;
A decrease in per-patient expenditures by 25%;
An increase in proportion of surgeries performed on an ambulatory basis (80% in FY 1999 vs. 35% in FY 1995);
A 10% increase in total number of surgeries performed with a decrease in 30-day morbidity and mortality;
VA health user satisfaction scores that exceeded the private sector; and
Realignment of the VA medical research program with establishment of a new translational research program, the Quality Enhancement Research Initiative (QUERI).
These achievements were not the result of one person’s efforts. Change implementation required engagement of front line staff, especially the physicians and other health care providers. Unfortunately last year’s VA waitlist scandal raised serious concerns related to veterans’ access to care, scheduling practices, and the reporting of performance metrics. In an article published in the New England Journal of Medicine, Dr. Kizer expressed his concerns regarding variability in the quality of care provided within VA in 2014 when compared to other top-tier integrated healthcare systems. Some VA hospitals performed remarkably well while others did not, and some facilities severely lacked personnel and resources.
Today, there are approximately 9 million veterans enrolled in VA health care, and the VA needs physicians to step up and be leaders. Advanced technology (e.g., secure messaging, e-consultation, and clinical video telehealth) already exists within the VA to streamline communication between patients and physicians and can be used to promote patient-centered, personalized health care and improve access. Some of the highest impact medical research in the world takes place within VA, performed by VA physician scientists, and requires leaders to advocate for continued funding. The results of these studies and others should form the basis of best clinical practices that VA physician leaders need to disseminate and implement at their respective facilities. VA physicians have pioneered the field of simulation education, and this represents one tool that may be used to facilitate dissemination. The VA has arguably the richest and most mature electronic health record in the country, if not the world; yet these data are not easily accessible. Physicians on the front lines of patient care, those engaged in research, and those in leadership positions need to advocate for resources to develop real-time analytics and harness the power of our patients’ data to guide clinical care decisions and make the health care system adaptable to the changing needs of patients.
Finally, I call on VA physician leaders to be innovators, designing and studying new interdisciplinary coordinated models of care, to improve outcomes and then share these models with each other. We physicians need to work together as “One VA” to decrease variability within the system and improve quality and value throughout.
Our health care system needs more physician leaders. Physician-led accountable care organizations have been shown to improve the quality of patient care while reducing overall costs. Physicians, by their nature, tend to be goal-oriented, have the ability to gather and assimilate evidence, and make difficult decisions, but these traits do not always translate naturally into leadership skills. We are trained to make a diagnosis and map out a treatment plan in medical school and residency, but the typical curriculum does not include developing staff, leading teams, or strategic planning. One option to learn these skills is to get an MBA. However, going back to school is not an option for everyone (like me—at least not yet), and it may not be necessary. Besides first being a good doctor, here are a few tips that may help open up leadership opportunities:
1. Be open to possibilities. Sometimes an opportunity doesn’t always look like one. In other words, plans don’t always work out the way you think they will.
2. Say “yes” to things that sound like more work. Pick up that extra call or volunteer for that hospital committee. Saying “yes” can introduce you to many new people and experiences. If you say “yes” then follow through. New colleagues who see you as a finisher often go back to you again and introduce you to others.
3. Let people look after you. This may not be “mentorship” in the traditional sense. A friend of a friend or someone’s spouse you meet at a department function may introduce you to people with similar interests in clinical care, quality improvement, or research.
4. Give credit to others. “Taking credit” is not about featuring an individual or the leader—it should be about the group. You can’t implement change without a team, and as a leader you have to make sure the group gets the recognition it deserves.
5. Given the opportunity, lead and not just manage. “Leadership” and “management” are often used interchangeably (unfortunately), and managerial duties often come with any leadership position, but they are not the same. People want to follow a leader, not a manager.
In healthcare, a leader should set a good example of professionalism in clinical care, communications, and administrative work. A leader creates a shared vision for the group with a clear direction and celebration of the group’s accomplishments. A leader first invests in his or her staff members to develop them individually so their greater potential can benefit the group. A leader is inspired by his or her staff and is constantly listening and learning.
We have all heard the “doom and gloom” statistics about rising health care spending, and maybe even some of them have begun to sink in since the roll-out of the Affordable Care Act.
For many reasons, the federal government is working to curb health care expenditures, but many of the processes currently attributed to “Obamacare” have been in the works for a long time. As an example, the Medicare Modernization Act of 2003 introduced the Inpatient Prospective Payment System; this system encouraged participating hospitals to voluntarily report performance data to avoid payment reductions. The Deficit Reduction Act of 2005 went further by mandating the development of what we now know as pay-for-performance or value-based purchasing (used interchangeably).
What does this mean? Value-based purchasing in health care is supposed to reward better value, patient outcomes, and innovations – instead of just volume of services (read more). It is funded by participating institutions based on withholding a set percentage (1.25% currently) of their estimated annual Diagnosis-Related Group (DRG) payments from Center for Medicare and Medicaid Services (CMS). The percentage is increasing every year and will be 2% by 2017.
For FY2014, the elements of value-based purchasing have been updated to include the Clinical Process of Care Domain, Patient Experience of Care Domain, and a new Outcomes Domain. The amount that each of these domains contributes to the eventual DRG payment return at the end of the year is 45%, 30%, and 25%, respectively. Scores in each domain are calculated based on an institution’s improvement compared to its own historical performance and a comparison against national benchmarks (read more).
How do we as anesthesiologists address the need for acute pain medicine physicians and have a positive impact on the patient experience? We can take the lead in developing multimodal perioperative pain management protocols (1). For total joint arthroplasty, many of these protocols emphasize opioid-sparing regional anesthesia techniques such as peripheral nerve blocks (PNB) and perineural catheters. These techniques decrease patients’ reliance on opioids for postoperative pain management and are also associated with fewer opioid-related side effects, better sleep, and higher satisfaction (2). In addition, greater selectivity in the PNB technique included in a multimodal protocol may even lead to greater functional achievements for total knee arthroplasty (TKA) patients which generates additional value (3). For more information about TKA perioperative pain management and improving rehabilitation outcomes, please see my previous post “Regional Anesthesia & Rehabilitation Outcomes after Knee Replacement.”
Anesthesiologists can also add value through cost savings for the hospital. More effective pain management can prevent inadvertent admissions or readmissions due to pain. In addition, an effective multimodal analgesic protocol can directly or indirectly prevent hospital-acquired conditions (HACs). HACs are considered by CMS to be “never events” and supposedly preventable (4); hospitals reporting HACs as secondary diagnoses are not entitled to CMS payments for related care. Examples of HACs include: urinary and vascular catheter-related infections, surgical site infections, DVT/PE, pressure ulcers, and inpatient falls leading to injury.
There remains substantial controversy related to the potential association between regional anesthesia and inpatient falls (5, 6). We do know that falls, when they occur, are associated with worse outcomes for patients and higher resource utilization (7) and that falls may occur in lower extremity joint replacement patients with or without PNB (8). For these reasons, these patients should always be treated as high fall risk, and anesthesiologists can take the lead in developing fall prevention education and fall reduction programs to keep them safe.
In summary, pay for performance in perioperative pain management is already here. The HCAHPS survey assesses the Patient Experience Domain and can be heavily influenced by the effectiveness of pain management. There are clear opportunities for anesthesiologists to take an active role in adding value and minimizing risks for surgical patients in the perioperative period.
References:
Hebl JR, Kopp SL, Ali MH, Horlocker TT, Dilger JA, Lennon RL, Williams BA, Hanssen AD, Pagnano MW. A comprehensive anesthesia protocol that emphasizes peripheral nerve blockade for total knee and total hip arthroplasty. J Bone Joint Surg Am 2005;87 Suppl 2:63-70.
Ilfeld BM. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011;113:904-25.
Mudumbai SC, Kim TE, Howard SK, Workman JJ, Giori N, Woolson S, Ganaway T, King R, Mariano ER. Continuous Adductor Canal Blocks Are Superior to Continuous Femoral Nerve Blocks in Promoting Early Ambulation After TKA. Clinical orthopaedics and related research 2014;472:1377-83.
Ilfeld BM, Duke KB, Donohue MC. The association between lower extremity continuous peripheral nerve blocks and patient falls after knee and hip arthroplasty. Anesth Analg 2010;111:1552-4.
Memtsoudis SG, Danninger T, Rasul R, Poeran J, Gerner P, Stundner O, Mariano ER, Mazumdar M. Inpatient falls after total knee arthroplasty: the role of anesthesia type and peripheral nerve blocks. Anesthesiology 2014;120:551-63.
Memtsoudis SG, Dy CJ, Ma Y, Chiu YL, Della Valle AG, Mazumdar M. In-hospital patient falls after total joint arthroplasty: incidence, demographics, and risk factors in the United States. The Journal of arthroplasty 2012;27:823-8 e1.
Johnson RL, Kopp SL, Hebl JR, Erwin PJ, Mantilla CB. Falls and major orthopaedic surgery with peripheral nerve blockade: a systematic review and meta-analysis. Br J Anaesth 2013;110:518-28.
The concept of preoperative preparation for patients scheduled for surgery requiring anesthesia is not a new one. In fact, the idea goes back to Dr. Albert Lee’s description in 1949 (1, 2). Dr. Lee had observed in his day that patients commonly presented for surgery in various states of poor health; it seemed to make more sense to see these patients before surgery to identify areas of concern early and optimize patients’ conditions they went under the knife.
The model of a stand-alone preoperative evaluation clinic, often run by anesthesiology staff, with a “one stop shop” model for patients’ interviews and examinations, testing, education, and referrals really did not take off until the 1990s (3). This patient-centered care model was intended to improve efficiency by decreasing the run-around that many patients encountered, but it also saved money for the institution by reducing the ordering of unnecessary tests (4) and decreasing day-of-surgery cancellations (4, 5).
Current State
In the present state (assuming an ACO or HMO model), patients are referred to the surgeon by the primary care physician for evaluation of a problem that may be amenable to surgical correction. If the surgeon deems the patient a surgical candidate, the patient may receive a scheduled date for surgery and then may be referred to the anesthesiology preoperative evaluation clinic (“preop clinic”) for further work-up. During this encounter, the provider in the preop clinic may request a variety of tests based on the planned surgery and the patient’s comorbid conditions in order to make appropriate recommendations regarding perioperative management to minimize risks. The American Society of Anesthesiologists (ASA) has published a recent (2012) practice advisory for preanesthesia evaluation to guide this process.
Unfortunately, after nearly 2 decades of employing this model, day of surgery cancellations still occur at various rates around the world. Some of the reasons are related to factors that preop clinics were meant to avoid: inadequate preoperative work-up or change in medical condition (6). Other reasons are patient-driven: patients’ not showing up (7) or patients’ changing their minds about having surgery (8). Although not all of these issues are easily solved, it does make me wonder–perhaps it is time for us to rethink the process of preparing patients for surgery.
In our current state, a patient may hypothetically be scheduled for surgery in 8 weeks, a date agreed upon by the patient and surgeon based on available dates. Even if a preop clinic visit takes place the same day as the surgery clinic visit, this only allows 2 months to optimize a patient’s chronic medical conditions (e.g., hypertension, diabetes, coronary artery disease) that took years to develop. Imagine if the timeline was even shorter, like 3 weeks. Add to this time pressure the tremendous physiologic stress that surgery and the subsequent rehabilitation put on the body, and it is not difficult to see why patients can still be cancelled on the day of surgery when they present with abnormal vital signs or test results, making the risks seem too high. We would not expect ourselves to run a marathon without adequate training and preparation on short notice–why would we do this to our patients having elective surgery?
Future State
How can we improve preoperative preparation? I think it still starts with the primary care physician. With advances in technology such as telemedicine and e-consults (or low-tech phone calls), we have ways to create a direct interface between primary care physicians and anesthesiologists to discuss advanced preparation of patients who may undergo elective surgical procedures.
This coordinated care model is consistent with ASA’s Perioperative Surgical Home. Early consultation may involve assessment of a patient’s risks and benefits from the procedure, consideration of alternative treatments, and development of a plan to optimize the patient’s comorbid conditions, medication management, and nutrition. Strong for Surgery is a program that provides patients and clinicians useful checklists based on best-available evidence to guide early preoperative preparation related to smoking cessation, nutrition, glycemic control, and medication management. For elective surgery, the decision when to refer the patient to a surgeon can be made jointly by the primary care physician and anesthesiologist. Prior to surgery, the preop clinic visit should still take place, but the focus no longer needs to be on information-gathering and ordering a battery of tests; rather, the goals should be to review pertinent instructions, preview the perioperative experience for patients, and address any logistical or scheduling issues raised by patients to prevent their not showing up or changing their minds at the last minute. Let’s get started.
Among Medicare beneficiaries in the United States, the number of primary total knee arthroplasty (TKA) procedures from 1991 to 2010 increased by 161.5% (1). Postoperative pain remains one of patients’ top concerns when undergoing elective surgery (2) and can limit patients’ functional ability in the early postoperative period (3). Providing effective perioperative pain control has potential longer-term implications since early rehabilitation may lead to improvements in functional outcomes later on (4). With the ability to select specific targets for local anesthetic injection and infusion, regional anesthesia techniques, neuraxial and peripheral, are commonly included in the perioperative analgesic protocol for joint arthroplasty patients (5-11). While the data supporting the analgesic efficacy of regional anesthesia techniques in this setting are strongly positive, studies attempting to attribute functional outcome benefits to regional anesthesia demonstrate mixed results.
The main challenge in assessing functional outcomes following joint replacement is the selection of outcomes; these can be divided into performance-based outcomes and self-reported outcomes (12, 13). Performance-based outcomes are measurable and arguably more objective, although often subject to effort. Examples of these outcomes and their units of measure include joint range of motion in degrees (e.g., flexion, extension, rotation); timed walking tests in meters (e.g., 6 minute walking test [6MWT], 2 minute walking test [2MWT]); muscle strength in units of force using a dynamometer (e.g., maximum voluntary isometric contraction [MVIC]); and timed up-and-go (TUG) in minutes (12, 13). Self-reported outcomes are typically survey-based; examples include the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Knee Society Score, and Lower Extremity Functional Scale (12, 13). Since patient perception of successful rehabilitation is an important factor, self-reported outcomes should be reported with performance-based outcomes (12). Another important challenge when measuring and comparing functional outcomes is that clinical pathways for joint arthroplasty that integrate pain management (including regional analgesia), physical therapy, nursing, and surgical care are often specific to individual institutions, and institutions may vary with respect to rehabilitation goals and the timeline to achieve them.
Epidural Analgesia
Epidural analgesia has been used for perioperative pain management in joint replacement patients since at least the 1980s (14, 15). In 1987, Raj and colleagues compared postoperative systemic opioid analgesia to continuous epidural analgesia (bupivacaine 0.25% at 6-15 ml/hr) for TKA patients in a prospective non-randomized study (14). Although pain scores were lower in the epidural group, not surprisingly a high proportion of these patients experienced complete motor block of the lower extremities; although the authors mention “rigorous passive exercises,” specific rehabilitation outcomes were not reported (14). Later studies have reported functional benefits associated with continuous epidural analgesia, such as shorter time to achieve ambulation distance and range of motion goals, when compared to parenteral opioids alone (16). At institutions where continuous epidural analgesia is currently employed as part of a multimodal analgesic protocol, very low doses of local anesthetic (e.g., 0.06% bupivacaine) in combination with opioid are used in order to minimize motor block (17).
Peripheral Nerve Blocks
The innervation of the knee is complex and involves contributions from both the lumbar and sacral plexuses. While epidural analgesia is effective, it is also associated with clinically-significant side effects (e.g., nausea/vomiting and motor block of the non-operative limb) (5, 18) and the potential for neuraxial hematoma in patients on pharmacologic thromboprophylaxis (19). Thus, peripheral nerve block options, either single-injection or continuous infusions, have been explored for postoperative pain management.
Two early studies by Capdevila (6) and Singelyn (20) have shown continuous femoral nerve block (FNB) to provide comparable analgesia and physical therapy outcome achievement with fewer side effects when compared to epidural analgesia. Both of these studies also demonstrated shorter hospital length of stay for the regional anesthesia groups compared to an opioid-only group (6, 20), but hospitalization duration for these studies was, on average, greater than what has been reported in other studies (21). Triple-masked, placebo-controlled randomized clinical trials have shown that CPNB can shorten the time to achieve discharge criteria, including 100 m ambulation distance, for TKA (10, 22) and total hip arthroplasty (THA) (9) patients, but actual hospital duration was similar in these studies.
One of the interesting findings from the Singelyn study was that regional anesthesia patients maintained a knee flexion advantage over the opioid-only group at 6 week follow-up (20); although this advantage did not remain at 3 months, this finding supported the potential for long-term functional improvement resulting from effective pain management and early rehabilitation in the immediate perioperative period (4). In a randomized comparison of continuous FNB to local infiltration analgesia (LIA) for TKA, the FNB group spent more time out of bed walking; at 6 weeks, the FNB group showed more improvement in performance-based (6MWT) and self-reported functional outcome assessments (23). In contrast, the one year follow-up studies of randomized clinical trial subjects (9, 10, 22) using self-reported outcome measures for functional status (WOMAC) did not show long-term improvement associated with regional anesthesia techniques (24-27).
The rehabilitation outcome measured in the immediate postoperative period that correlates best with long-term functional improvement is not yet established. Ambulation distance is often measured by physical therapists and included in discharge criteria (9, 10, 22). For institutions that emphasize ambulation in their clinical pathway for lower extremity joint arthroplasty, a major concern raised with regard to FNBs is the potential association with increased fall risk (28, 29) although a recent large database study disputes this finding. In-hospital falls can lead to prolonged hospital stays with higher costs and are associated with more frequent postoperative complications, including serious organ system dysfunction and death (30). With currently-available local anesthetic solutions and typical doses, perineural infusion does produce clinically-significant quadriceps weakness when administered near the femoral nerve or lumbar plexus (31, 32). Since the local anesthetics themselves cannot select sensory over motor nerves( 33), anesthesiologists have started exploring alternate nerve block locations to minimize the risk of motor block and maximize patient rehabilitation.
From Workman JJ, et al. Presented at 2013 ASRA Spring Annual Meeting
For TKA, a more distal nerve block location in the adductor canal can provide effective analgesia postoperatively (34) and has been shown to better preserve quadriceps strength compared to a FNB in both volunteers (35) and clinical patients (11). Regional analgesic techniques are only one part of the overall pain management plan. While they are often included in multimodal analgesic protocols along with non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and low-dose opioids (36), there is a growing body of evidence to support the adductor canal block as the regional analgesic technique of choice for promoting postoperative ambulation within a clinical pathway (37, 38).
For patient information with answers to frequently-asked questions about regional anesthesia, please see “Regional Anesthesia FAQs.”
References
Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA. Sep 26 2012;308(12):1227-1236.
Macario A, Weinger M, Carney S, Kim A. Which clinical anesthesia outcomes are important to avoid? The perspective of patients. Anesth Analg. Sep 1999;89(3):652-658.
Holm B, Kristensen MT, Myhrmann L, et al. The role of pain for early rehabilitation in fast track total knee arthroplasty. Disability and rehabilitation. 2010;32(4):300-306.
Munin MC, Rudy TE, Glynn NW, Crossett LS, Rubash HE. Early inpatient rehabilitation after elective hip and knee arthroplasty. JAMA. Mar 18 1998;279(11):847-852.
Barrington MJ, Olive D, Low K, Scott DA, Brittain J, Choong P. Continuous femoral nerve blockade or epidural analgesia after total knee replacement: a prospective randomized controlled trial. Anesth Analg. Dec 2005;101(6):1824-1829.
Capdevila X, Barthelet Y, Biboulet P, Ryckwaert Y, Rubenovitch J, d’Athis F. Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. Anesthesiology. Jul 1999;91(1):8-15.
Chelly JE, Greger J, Gebhard R, et al. Continuous femoral blocks improve recovery and outcome of patients undergoing total knee arthroplasty. J Arthroplasty. Jun 2001;16(4):436-445.
Hebl JR, Dilger JA, Byer DE, et al. A pre-emptive multimodal pathway featuring peripheral nerve block improves perioperative outcomes after major orthopedic surgery. Reg Anesth Pain Med. Nov-Dec 2008;33(6):510-517.
Ilfeld BM, Ball ST, Gearen PF, et al. Ambulatory continuous posterior lumbar plexus nerve blocks after hip arthroplasty: a dual-center, randomized, triple-masked, placebo-controlled trial. Anesthesiology. Sep 2008;109(3):491-501.
Ilfeld BM, Le LT, Meyer RS, et al. Ambulatory continuous femoral nerve blocks decrease time to discharge readiness after tricompartment total knee arthroplasty: a randomized, triple-masked, placebo-controlled study. Anesthesiology. Apr 2008;108(4):703-713.
Jaeger P, Zaric D, Fomsgaard JS, et al. Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty: a randomized, double-blind study. Reg Anesth Pain Med. Nov-Dec 2013;38(6):526-532.
Choi S, Trang A, McCartney CJ. Reporting functional outcome after knee arthroplasty and regional anesthesia: a methodological primer. Reg Anesth Pain Med. Jul-Aug 2013;38(4):340-349.
Bernucci F, Carli F. Functional outcome after major orthopedic surgery: the role of regional anesthesia redefined. Curr Opin Anaesthesiol. Oct 2012;25(5):621-628.
Raj PP, Knarr DC, Vigdorth E, et al. Comparison of continuous epidural infusion of a local anesthetic and administration of systemic narcotics in the management of pain after total knee replacement surgery. Anesth Analg. May 1987;66(5):401-406.
Pettine KA, Wedel DJ, Cabanela ME, Weeks JL. The use of epidural bupivacaine following total knee arthroplasty. Orthopaedic review. Aug 1989;18(8):894-901.
Mahoney OM, Noble PC, Davidson J, Tullos HS. The effect of continuous epidural analgesia on postoperative pain, rehabilitation, and duration of hospitalization in total knee arthroplasty. Clin Orthop Relat Res. Nov 1990(260):30-37.
YaDeau JT, Cahill JB, Zawadsky MW, et al. The effects of femoral nerve blockade in conjunction with epidural analgesia after total knee arthroplasty. Anesth Analg. Sep 2005;101(3):891-895, table of contents.
Zaric D, Boysen K, Christiansen C, Christiansen J, Stephensen S, Christensen B. A comparison of epidural analgesia with combined continuous femoral-sciatic nerve blocks after total knee replacement. Anesth Analg. Apr 2006;102(4):1240-1246.
Horlocker TT, Wedel DJ, Rowlingson JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. Jan-Feb 2010;35(1):64-101.
Singelyn FJ, Deyaert M, Joris D, Pendeville E, Gouverneur JM. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. Anesth Analg. Jul 1998;87(1):88-92.
Salinas FV, Liu SS, Mulroy MF. The effect of single-injection femoral nerve block versus continuous femoral nerve block after total knee arthroplasty on hospital length of stay and long-term functional recovery within an established clinical pathway. Anesth Analg. Apr 2006;102(4):1234-1239.
Ilfeld BM, Mariano ER, Girard PJ, et al. A multicenter, randomized, triple-masked, placebo-controlled trial of the effect of ambulatory continuous femoral nerve blocks on discharge-readiness following total knee arthroplasty in patients on general orthopaedic wards. Pain. Sep 2010;150(3):477-484.
Carli F, Clemente A, Asenjo JF, et al. Analgesia and functional outcome after total knee arthroplasty: periarticular infiltration vs continuous femoral nerve block. Br J Anaesth. Aug 2010;105(2):185-195.
Ilfeld BM, Shuster JJ, Theriaque DW, et al. Long-term pain, stiffness, and functional disability after total knee arthroplasty with and without an extended ambulatory continuous femoral nerve block: a prospective, 1-year follow-up of a multicenter, randomized, triple-masked, placebo-controlled trial. Reg Anesth Pain Med. Mar-Apr 2011;36(2):116-120.
Morin AM, Kratz CD, Eberhart LH, et al. Postoperative analgesia and functional recovery after total-knee replacement: comparison of a continuous posterior lumbar plexus (psoas compartment) block, a continuous femoral nerve block, and the combination of a continuous femoral and sciatic nerve block. Reg Anesth Pain Med. Sep-Oct 2005;30(5):434-445.
Ilfeld BM, Ball ST, Gearen PF, et al. Health-related quality of life after hip arthroplasty with and without an extended-duration continuous posterior lumbar plexus nerve block: a prospective, 1-year follow-up of a randomized, triple-masked, placebo-controlled study. Anesth Analg. Aug 2009;109(2):586-591.
Ilfeld BM, Meyer RS, Le LT, et al. Health-related quality of life after tricompartment knee arthroplasty with and without an extended-duration continuous femoral nerve block: a prospective, 1-year follow-up of a randomized, triple-masked, placebo-controlled study. Anesth Analg. Apr 2009;108(4):1320-1325.
Feibel RJ, Dervin GF, Kim PR, Beaule PE. Major complications associated with femoral nerve catheters for knee arthroplasty: a word of caution. J Arthroplasty. Sep 2009;24(6 Suppl):132-137.
Ilfeld BM, Duke KB, Donohue MC. The association between lower extremity continuous peripheral nerve blocks and patient falls after knee and hip arthroplasty. Anesth Analg. Dec 2010;111(6):1552-1554.
Memtsoudis SG, Dy CJ, Ma Y, Chiu YL, Della Valle AG, Mazumdar M. In-hospital patient falls after total joint arthroplasty: incidence, demographics, and risk factors in the United States. J Arthroplasty. Jun 2012;27(6):823-828 e821.
Charous MT, Madison SJ, Suresh PJ, et al. Continuous femoral nerve blocks: varying local anesthetic delivery method (bolus versus basal) to minimize quadriceps motor block while maintaining sensory block. Anesthesiology. Oct 2011;115(4):774-781.
Ilfeld BM, Moeller LK, Mariano ER, et al. Continuous peripheral nerve blocks: is local anesthetic dose the only factor, or do concentration and volume influence infusion effects as well? Anesthesiology. Feb 2010;112(2):347-354.
Ilfeld BM, Yaksh TL. The end of postoperative pain–a fast-approaching possibility? And, if so, will we be ready? Reg Anesth Pain Med. Mar-Apr 2009;34(2):85-87.
Lund J, Jenstrup MT, Jaeger P, Sorensen AM, Dahl JB. Continuous adductor-canal-blockade for adjuvant post-operative analgesia after major knee surgery: preliminary results. Acta Anaesthesiol Scand. Jan 2011;55(1):14-19.
Jaeger P, Nielsen ZJ, Henningsen MH, Hilsted KL, Mathiesen O, Dahl JB. Adductor Canal Block versus Femoral Nerve Block and Quadriceps Strength: A Randomized, Double-blind, Placebo-controlled, Crossover Study in Healthy Volunteers. Anesthesiology. Feb 2013;118(2):409-415.
Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology. Feb 2012;116(2):248-273.
Perlas A, Kirkham KR, Billing R, et al. The impact of analgesic modality on early ambulation following total knee arthroplasty. Reg Anesth Pain Med. Jul-Aug 2013;38(4):334-339.
Mudumbai SC, Kim TE, Howard SK, et al. Continuous adductor canal blocks are superior to continuous femoral nerve blocks in promoting early ambulation after TKA. Clin Orthop Relat Res. 2014 May;472(5):1377-83.
Edward R. Mariano, MD, MAS, FASA, FASRA is a physician specializing in anesthesiology, professor, husband, and father working to improve pain control, outcomes, and the overall experience for patients having surgery